@article{TMF_2022_210_1_a5,
author = {Liming Zang},
title = {On the~integrability of a four-component super system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {99--114},
year = {2022},
volume = {210},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a5/}
}
Liming Zang. On the integrability of a four-component super system. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 99-114. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a5/
[1] R. Camassa, D. D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR
[2] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and Perturbation Theory, Proceedings of 2nd International Workshop (Rome, Italy, December 16–22, 1998), eds. A. Degasperis, G. Gaeta, World Sci., Singapore, 1999, 23–37 | MR | Zbl
[3] A. Degasperis, D. D. Kholm, A. Khon, “Novoe integriruemoe uravnenie s pikonnymi resheniyami”, TMF, 133:2 (2002), 170–183 | DOI | DOI | MR
[4] V. Novikov, “Generalizations of the Camassa–Holm equation”, J. Phys. A: Math. Theor., 42:34 (2009), 342002, 14 pp. | DOI | MR
[5] P. J. Olver, P. Rosenau, “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support”, Phys. Rev. E, 53:2 (1996), 1900–1906 | DOI | MR
[6] B. Fuchssteiner, “Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation”, Phys. D, 95:3–4 (1996), 229–243 | DOI | MR
[7] A. S. Fokas, “On a class of physically important integrable equations”, Phys. D, 87:1–4 (1995), 145–150 | DOI | MR
[8] N. Li, Q. P. Liu, Z. Popowicz, “A four-component Camassa–Holm type hierarchy”, J. Geom. Phys., 85 (2014), 29–39, arXiv: 1310.1781 | DOI | MR
[9] X. G. Geng, B. Xue, “A three-component generalization of Camassa–Holm equation with $N$-peakon solutions”, Adv. Math., 226:1 (2011), 827–839 | DOI | MR
[10] X. Geng, B. Xue, “An extension of integrable peakon equations with cubic nonlinearity”, Nonlinearity, 22:8 (2009), 1847–1856 | DOI | MR
[11] J. Song, C. Qu, Z. Qiao, “A new integrable two-component system with cubic nonlinearity”, J. Math. Phys., 52:1 (2011), 013503, 9 pp. | DOI | MR | Zbl
[12] B. Xia, Z. Qiao, R. Zhou, “A synthetical two-component model with peakon solutions”, Stud. Appl. Math., 135:3 (2015), 248–276 | DOI | MR
[13] B. Xia, Z. Qiao, J. Li, “An integrable system with peakon, complex peakon, weak kink, and kink-peakon interactional solutions”, Commun. Nonlinear Sci. Numer. Simul., 63 (2018), 292–306 | DOI | MR
[14] M. Chen, S.-Q. Liu, Y. J. Zhang, “A two-component generalization of the Camassa–Holm equation and its solutions”, Lett. Math. Phys., 75:1 (2006), 1–15 | DOI | MR
[15] D. D. Holm, R. I. Ivanov, “Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples”, J. Phys. A: Math. Theor., 43:49 (2010), 492001, 20 pp. | DOI | MR
[16] G. Falqui, “On a Camassa–Holm type equation with two dependent variables”, J. Phys. A: Math. Gen., 39:2 (2006), 327–342, arXiv: nlin/0505059 | DOI | MR
[17] B. Xia, Z. Qiao, “A new two-component integrable system with peakon solutions”, Proc. A: Math. Phys. Eng. Sci., 471:2175 (2015), 20140750, 20 pp. | DOI | MR
[18] B. Gao, K. Tian, Q. P. Liu, “Some super systems with local bi-Hamiltonian operators”, Phys. Lett. A, 383:5 (2019), 400–405 | DOI | MR
[19] M. Chaichian, P. P. Kulish, “On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations”, Phys. Lett. B, 78:4 (1978), 413–416 | DOI
[20] A. G. Izergin, P. P. Kulish, “Obratnaya zadacha dlya sistem s antikommutiruyuschimi peremennymi i massivnaya model Tirringa”, TMF, 44:2 (1980), 189–193 | DOI | MR
[21] T. G. Khovanova, “Superuravnenie Kortevega–de Friza, svyazannoe s superalgebroi Li strunnoi teorii Nevë–Shvartsa-2”, TMF, 72:2 (1987), 306–312 | DOI | MR | Zbl
[22] B. A. Kupershmidt, “A super Korteweg–de Vries equation: an integrable system”, Phys. Lett. A, 102:5–6 (1984), 213–215 | DOI | MR
[23] P. Mathieu, “Supersymmetric extension of the Korteweg–de Vries equation”, J. Math. Phys., 29:11 (1988), 2499–2506 | DOI | MR
[24] M. Gürses, Ö. Oğuz, “A super AKNS scheme”, Phys. Lett. A, 108:9 (1985), 437–440 | DOI | MR
[25] Yu. I. Manin, A. Radul, “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Commun. Math. Phys., 98:1 (1985), 65–77 | DOI | MR
[26] A. Yu. Orlov, “Vertex operator, $\bar{\partial}$-problem, symmetries, variational identities and Hamiltonian formalism for $2+1$ integrable systems”, Plasma Theory and Nonlinear and Turbulent Processes in Physics (Kiev, USSR, 13–25 April, 1987), v. 1, eds. V. G. Bar'yakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, V. E. Zakharov, World Sci., Singapore, 1988, 116–134 | MR | Zbl
[27] X.-B. Hu, “An approach to generate superextensions of integrable systems”, J. Phys. A, 30:2 (1997), 619–632 | DOI | MR
[28] L. Zhang, D. Zuo, “Integrable hierarchies related to the Kuper–CH spectral problem”, J. Math. Phys., 52:7 (2011), 073503, 11 pp. | DOI | MR
[29] X. Geng, B. Xue, L. Wu, “A super Camassa–Holm equation with $N$-peakon solutions”, Stud. Appl. Math., 130:1 (2013), 1–16 | DOI | MR
[30] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl
[31] B. Fuchssteiner, “Application of spectral-gradient methods to nonlinear soliton equations”, (unpublished) http://fuchssteiner.info/papers/29.pdf
[32] P. Mathieu, “Hamiltonian structure of graded and super evolution equations”, Lett. Math. Phys., 16:3 (1988), 199–206 | DOI | MR
[33] C. Devchand, J. Schiff, “The supersymmetric Camassa–Holm equation and geodesic flow on the superconformal group”, J. Math. Phys., 42:1 (2001), 260–273 | DOI | MR