Mots-clés : sine-Gordon equation, solitons, Darboux transformation.
@article{TMF_2022_210_1_a4,
author = {U. Saleem and H. Sarfraz and Ya. Hanif},
title = {Dynamics of kink-soliton solutions of the~$(2+1)$-dimensional},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {80--98},
year = {2022},
volume = {210},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a4/}
}
U. Saleem; H. Sarfraz; Ya. Hanif. Dynamics of kink-soliton solutions of the $(2+1)$-dimensional. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 80-98. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a4/
[1] V. E. Zakharov, L. A. Takhtadzhyan, L. D. Faddeev, “Polnoe opisanie reshenii ‘sin-Gordon’ uravneniya”, Dokl. AN SSSR, 219:6 (1974), 1334–1337 | MR | Zbl
[2] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI
[3] E. Bour, Théorie de la déformation des surfaces, Gauthier-Villars, Paris, 1861
[4] A. V. Bäcklund, “Ueber flächentransformationen”, Math. Ann., 9:3 (1875), 297–320 | DOI
[5] J. Frenkel, T. Kontorova, “Propagation of dislocation in crystals”, J. Phys. USSR , 1:137 (1939), 348
[6] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear-evolution equations of physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127 | DOI
[7] G. L. Lamb Jr., “Propagation of ultrashort optical pulses”, Phys. Lett. A, 25:3 (1967), 181–182 | DOI
[8] V. A. Kozel, V. P. Kotlyarov, “Pochti periodicheskie resheniya uravneniya $u_{tt}-u_{xx}+\sin u=0$”, Dokl. AN USSR. Ser. A, 1976, no. 10, 878–881 | MR | Zbl
[9] B. A. Dubrovin, S. M. Natanzon, “Veschestvennye dvukhzonnye resheniya uravneniya sine-Gordon”, Funkts. analiz i ego pril., 16:1 (1982), 27–43 | DOI | MR | Zbl
[10] A. I. Bobenko, “O periodicheskikh konechnozonnykh resheniyakh uravneniya Sine-Gordon”, Funkts. analiz i ego pril., 18:3 (1984), 73–74 | DOI | MR | Zbl
[11] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994 | Zbl
[12] B. D. Josephson, “Supercurrents through barriers”, Adv. Phys., 14:56 (1965), 419–451 | DOI
[13] P. Lebwohl, M. J. Stephen, “Properties of vortex lines in superconducting barriers”, Phys. Rev, 163:2 (1967), 376–379 | DOI
[14] A. C. Scott, “Steady propagation on long Josephson junctions”, Bull. Am. Phys. Soc., 12 (1967), 308–309
[15] A. C. Scott, W. J. Johnson, “Internal flux motion in large Josephson junctions”, Appl. Phys. Lett., 14:10 (1969), 316–318 | DOI
[16] A. Barone, “Flux-flow effect in Josephson tunnel junctions”, J. Appl. Phys., 42:7 (1971), 2747–2751 | DOI
[17] T. H. R. Skyrme, “A non-linear theory of strong interactions”, Proc. Roy. Soc. London. Ser. A., 247:1249 (1958), 260–278 | DOI
[18] T. H. R. Skyrme, “Particle states of a quantized meson field”, Proc. Roy. Soc. London. Ser. A., 262:1309 (1961), 237–245 | DOI
[19] J. Rubinstein, “Sine-Gordon equation”, J. Math. Phys., 11:1 (1970), 258–266 | DOI
[20] U. Enz, “Discrete mass, elementary length, and a topological invariant as a consequence of a relativistic invariant variational principle”, Phys. Rev., 131:3 (1963), 1392–1394 | DOI
[21] N. Rosen, H. B. Rosenstock, “The force between particles in a nonlinear field theory”, Phys. Rev., 85:2 (1952), 257–259 | DOI
[22] V. G. Ivancevic, T. T. Ivancevic, “Sine-Gordon solitons, kinks and breathers as physical models of nonlinear excitations in living cellular structures”, J. Geom. Symmetry Phys., 31 (2013), 1–56, arXiv: 1305.0613 | DOI | MR | Zbl
[23] S. Yomosa, “Soliton excitations in deoxyribonucleic acid (DNA) double helices”, Phys. Rev. A, 27:4 (1983), 2120–2125 | DOI
[24] M. Peyrard, A. R. Bishop, “Statistical mechanics of a nonlinear model for DNA denaturation”, Phys. Rev. Lett., 62:23 (1989), 2755–2758 | DOI
[25] L. V. Yakushevich, Nonlinear Physics of DNA, John Wiley and Sons, New York, 2006 | DOI
[26] M. Daniel, V. Vasumathi, “Solitonlike base pair opening in a helicoidal DNA: An analogy with a helimagnet and a cholesteric liquid crystal”, Phys. Rev. E, 79:1 (2009), 012901, 4 pp., arXiv: 0812.4536 | DOI
[27] J. F. Currie, “Aspects of exact dynamics for general solutions of the sine-Gordon equation with applications to domain walls”, Phys. Rev. A, 16:4 (1977), 1692–1699 | DOI
[28] J. D. Gibbon, I. N. James, I. M. Moroz, “An example of soliton behaviour in a rotating baroclinic fluid”, Proc. Roy. Soc. London Ser. A., 367:1729 (1979), 219–237 | DOI
[29] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR | Zbl
[30] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge Univ. Press, Cambridge, 2002 | DOI
[31] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry, Mathematical Physics Studies, 26, Springer Science + Business Media, Dordrecht, 2005 | DOI
[32] A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye potentsialnye operatory Shredingera. Yavnye formuly i evolyutsionnye uravneniya”, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl
[33] A. Davey, K. Stewartson, “On three-dimensional packets of surface waves”, Proc. Roy. Soc. London Ser. A., 338:1613 (1974), 101–110 | DOI
[34] G. Wang, K. Yang, H. Gu, F. Guan, A. Kara, “A ($2+1$)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions”, Nucl. Phys. B, 953 (2020), 114956, 14 pp. | DOI
[35] A.-M. Wazwaz, “New integrable ($2+1$)-dimensional sine-Gordon equations with constant and time-dependent coefficients: Multiple optical kink wave solutions”, Optik, 216 (2020), 164640 | DOI
[36] A.-M. Wazwaz, “New integrable ($2+1$)- and ($3+1$)-dimensional sinh-Gordon equations with constant and time-dependent coefficients”, Phys. Lett. A, 384:23 (2020), 126529, 9 pp. | DOI
[37] Y. Feng, S. Bilige, X. Wang, “Diverse exact analytical solutions and novel interaction solutions for the ($2+1$)-dimensional Ito equation”, Phys. Scr., 95:9 (2020), 095201, 10 pp. | DOI
[38] G. Wang, A. H. Kara, “A ($2+1$)-dimensional KdV equation and mKdV equation: Symmetries, group invariant solutions and conservation laws”, Phys. Lett. A, 383:8 (2019), 728–731 | DOI