Dynamics of kink-soliton solutions of the $(2+1)$-dimensional
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 80-98
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the dynamics of explicit solutions of the $(2+1)$-dimensional (2D) sine-Gordon equation. The Darboux transformation is applied to the associated linear eigenvalue problem to construct nontrivial solutions of the $2$D sine-Gordon equation in terms of a ratio of determinants. We obtain a generalized expression for an $N$-fold transformed dynamical variable, which enables us to calculate explicit expressions of nontrivial solutions. To explore the dynamics of kink soliton solutions, explicit expressions for one- and two-soliton solutions are derived for particular column solutions. Different profiles of kink–kink and kink–anti-kink interactions are illustrated for different parameters and arbitrary functions. We also present a first-order bound state solution.
Keywords: integrable systems
Mots-clés : sine-Gordon equation, solitons, Darboux transformation.
@article{TMF_2022_210_1_a4,
     author = {U. Saleem and H. Sarfraz and Ya. Hanif},
     title = {Dynamics of kink-soliton solutions of the~$(2+1)$-dimensional},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {80--98},
     year = {2022},
     volume = {210},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a4/}
}
TY  - JOUR
AU  - U. Saleem
AU  - H. Sarfraz
AU  - Ya. Hanif
TI  - Dynamics of kink-soliton solutions of the $(2+1)$-dimensional
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 80
EP  - 98
VL  - 210
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a4/
LA  - ru
ID  - TMF_2022_210_1_a4
ER  - 
%0 Journal Article
%A U. Saleem
%A H. Sarfraz
%A Ya. Hanif
%T Dynamics of kink-soliton solutions of the $(2+1)$-dimensional
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 80-98
%V 210
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a4/
%G ru
%F TMF_2022_210_1_a4
U. Saleem; H. Sarfraz; Ya. Hanif. Dynamics of kink-soliton solutions of the $(2+1)$-dimensional. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 80-98. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a4/

[1] V. E. Zakharov, L. A. Takhtadzhyan, L. D. Faddeev, “Polnoe opisanie reshenii ‘sin-Gordon’ uravneniya”, Dokl. AN SSSR, 219:6 (1974), 1334–1337 | MR | Zbl

[2] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI

[3] E. Bour, Théorie de la déformation des surfaces, Gauthier-Villars, Paris, 1861

[4] A. V. Bäcklund, “Ueber flächentransformationen”, Math. Ann., 9:3 (1875), 297–320 | DOI

[5] J. Frenkel, T. Kontorova, “Propagation of dislocation in crystals”, J. Phys. USSR , 1:137 (1939), 348

[6] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear-evolution equations of physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127 | DOI

[7] G. L. Lamb Jr., “Propagation of ultrashort optical pulses”, Phys. Lett. A, 25:3 (1967), 181–182 | DOI

[8] V. A. Kozel, V. P. Kotlyarov, “Pochti periodicheskie resheniya uravneniya $u_{tt}-u_{xx}+\sin u=0$”, Dokl. AN USSR. Ser. A, 1976, no. 10, 878–881 | MR | Zbl

[9] B. A. Dubrovin, S. M. Natanzon, “Veschestvennye dvukhzonnye resheniya uravneniya sine-Gordon”, Funkts. analiz i ego pril., 16:1 (1982), 27–43 | DOI | MR | Zbl

[10] A. I. Bobenko, “O periodicheskikh konechnozonnykh resheniyakh uravneniya Sine-Gordon”, Funkts. analiz i ego pril., 18:3 (1984), 73–74 | DOI | MR | Zbl

[11] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994 | Zbl

[12] B. D. Josephson, “Supercurrents through barriers”, Adv. Phys., 14:56 (1965), 419–451 | DOI

[13] P. Lebwohl, M. J. Stephen, “Properties of vortex lines in superconducting barriers”, Phys. Rev, 163:2 (1967), 376–379 | DOI

[14] A. C. Scott, “Steady propagation on long Josephson junctions”, Bull. Am. Phys. Soc., 12 (1967), 308–309

[15] A. C. Scott, W. J. Johnson, “Internal flux motion in large Josephson junctions”, Appl. Phys. Lett., 14:10 (1969), 316–318 | DOI

[16] A. Barone, “Flux-flow effect in Josephson tunnel junctions”, J. Appl. Phys., 42:7 (1971), 2747–2751 | DOI

[17] T. H. R. Skyrme, “A non-linear theory of strong interactions”, Proc. Roy. Soc. London. Ser. A., 247:1249 (1958), 260–278 | DOI

[18] T. H. R. Skyrme, “Particle states of a quantized meson field”, Proc. Roy. Soc. London. Ser. A., 262:1309 (1961), 237–245 | DOI

[19] J. Rubinstein, “Sine-Gordon equation”, J. Math. Phys., 11:1 (1970), 258–266 | DOI

[20] U. Enz, “Discrete mass, elementary length, and a topological invariant as a consequence of a relativistic invariant variational principle”, Phys. Rev., 131:3 (1963), 1392–1394 | DOI

[21] N. Rosen, H. B. Rosenstock, “The force between particles in a nonlinear field theory”, Phys. Rev., 85:2 (1952), 257–259 | DOI

[22] V. G. Ivancevic, T. T. Ivancevic, “Sine-Gordon solitons, kinks and breathers as physical models of nonlinear excitations in living cellular structures”, J. Geom. Symmetry Phys., 31 (2013), 1–56, arXiv: 1305.0613 | DOI | MR | Zbl

[23] S. Yomosa, “Soliton excitations in deoxyribonucleic acid (DNA) double helices”, Phys. Rev. A, 27:4 (1983), 2120–2125 | DOI

[24] M. Peyrard, A. R. Bishop, “Statistical mechanics of a nonlinear model for DNA denaturation”, Phys. Rev. Lett., 62:23 (1989), 2755–2758 | DOI

[25] L. V. Yakushevich, Nonlinear Physics of DNA, John Wiley and Sons, New York, 2006 | DOI

[26] M. Daniel, V. Vasumathi, “Solitonlike base pair opening in a helicoidal DNA: An analogy with a helimagnet and a cholesteric liquid crystal”, Phys. Rev. E, 79:1 (2009), 012901, 4 pp., arXiv: 0812.4536 | DOI

[27] J. F. Currie, “Aspects of exact dynamics for general solutions of the sine-Gordon equation with applications to domain walls”, Phys. Rev. A, 16:4 (1977), 1692–1699 | DOI

[28] J. D. Gibbon, I. N. James, I. M. Moroz, “An example of soliton behaviour in a rotating baroclinic fluid”, Proc. Roy. Soc. London Ser. A., 367:1729 (1979), 219–237 | DOI

[29] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR | Zbl

[30] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge Univ. Press, Cambridge, 2002 | DOI

[31] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry, Mathematical Physics Studies, 26, Springer Science + Business Media, Dordrecht, 2005 | DOI

[32] A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye potentsialnye operatory Shredingera. Yavnye formuly i evolyutsionnye uravneniya”, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl

[33] A. Davey, K. Stewartson, “On three-dimensional packets of surface waves”, Proc. Roy. Soc. London Ser. A., 338:1613 (1974), 101–110 | DOI

[34] G. Wang, K. Yang, H. Gu, F. Guan, A. Kara, “A ($2+1$)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions”, Nucl. Phys. B, 953 (2020), 114956, 14 pp. | DOI

[35] A.-M. Wazwaz, “New integrable ($2+1$)-dimensional sine-Gordon equations with constant and time-dependent coefficients: Multiple optical kink wave solutions”, Optik, 216 (2020), 164640 | DOI

[36] A.-M. Wazwaz, “New integrable ($2+1$)- and ($3+1$)-dimensional sinh-Gordon equations with constant and time-dependent coefficients”, Phys. Lett. A, 384:23 (2020), 126529, 9 pp. | DOI

[37] Y. Feng, S. Bilige, X. Wang, “Diverse exact analytical solutions and novel interaction solutions for the ($2+1$)-dimensional Ito equation”, Phys. Scr., 95:9 (2020), 095201, 10 pp. | DOI

[38] G. Wang, A. H. Kara, “A ($2+1$)-dimensional KdV equation and mKdV equation: Symmetries, group invariant solutions and conservation laws”, Phys. Lett. A, 383:8 (2019), 728–731 | DOI