Relaxing solitons of a biaxial ferromagnet
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 54-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the Riemann problem on a torus to obtain and analyze new analytic solutions of the Landau–Lifshitz model that describe the nonlinear dynamics of solitons of a biaxial ferromagnet in the field of dispersive spin waves. We show that nonlinear interference of solitons and waves leads to nonadiabatic relaxation oscillations of solitons. Formulas are obtained that determine the changes in the frequency and velocity of solitons in the radiation field. Collisions of relaxing solitons on a spin-wave background are analyzed.
Keywords: Landau–Lifshitz equation, Riemann problem, dispersing waves.
Mots-clés : biaxial ferromagnet, solitons
@article{TMF_2022_210_1_a3,
     author = {V. V. Kiselev and S. Batalov},
     title = {Relaxing solitons of a biaxial ferromagnet},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {54--79},
     year = {2022},
     volume = {210},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a3/}
}
TY  - JOUR
AU  - V. V. Kiselev
AU  - S. Batalov
TI  - Relaxing solitons of a biaxial ferromagnet
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 54
EP  - 79
VL  - 210
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a3/
LA  - ru
ID  - TMF_2022_210_1_a3
ER  - 
%0 Journal Article
%A V. V. Kiselev
%A S. Batalov
%T Relaxing solitons of a biaxial ferromagnet
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 54-79
%V 210
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a3/
%G ru
%F TMF_2022_210_1_a3
V. V. Kiselev; S. Batalov. Relaxing solitons of a biaxial ferromagnet. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 54-79. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a3/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 8, Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR | Zbl

[2] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 9, Statisticheskaya fizika. Chast 2. Teoriya kondensirovannogo sostoyaniya, Fizmatlit, M., 2004 | MR

[3] L. D. Landau, Collected Papers of L. D. Landau, ed. D. Ter Haar, Pergamon Press, Oxford, 1965 | MR

[4] U. F. Braun, Mikromagnetizm, Hauka, M., 1979

[5] S. V. Vonsovskii, Magnetizm, Nauka, M., 1984

[6] E. K. Sklyanin, O polnoi integriruemosti uravneniya Landau–Lifshitsa, Preprint LOMI 3-79, LOMI AN SSSR, L., 1979

[7] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, Nelineinye volny namagnichennosti. Dinamicheskie i topologicheskie solitony, Naukova dumka, Kiev, 1983

[8] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, “Magnetic solitons”, J. Phys. Rep., 194:3–4 (1990), 117–238 | DOI

[9] A. B. Borisov, V. V. Kiselev, Kvaziodnomernye magnitnye solitony, Fizmatlit, M., 2014

[10] A. B. Borisov, V. V. Kiselev, “Dynamical solitons for a quasi-one-dimensional ferromagnet with easy plane-type anisotropy”, Phys. D, 19:3 (1986), 411–422 | DOI

[11] A. I. Yaremchuk, “Vzaimodeistvie domennoi stenki so spinovoi volnoi v ramkakh integriruemogo sluchaya uravneniya Landau–Lifshitsa”, TMF, 62:1 (1985), 153–158 | DOI | MR

[12] V. V. Kiselev, A. A. Raskovalov, “Forced motion of breathers and domain boundaries against the background of nonlinear magnetization wave”, Chaos, Solitons and Fractals, 45:12 (2012), 1551–1565 | DOI

[13] E. A. Kuznetsov, A. V. Mikhailov, “Relaksatsionnye kolebaniya solitonov”, Pisma v ZhETF, 60:6 (1994), 466–470

[14] E. A. Kuznetsov, A. V. Mikhailov, I. A. Shimokhin, “Nonlinear interaction of solitons and radiation”, Phys. D, 87:1 (1995), 201–215 | DOI

[15] V. V. Kiselev, A. A. Raskovalov, S. V. Batalov, “Nonlinear interactions of domain walls and breathers with a spin-wave field”, Chaos, Solitons and Fractals, 127 (2019), 217–225 | DOI

[16] R. F. Bikbaev, A. R. Its, “Asimptotika pri $t \to +\infty$ resheniya zadachi Koshi dlya uravneniya Landau–Lifshitsa”, TMF, 76:1 (1988), 3–17 | DOI | MR

[17] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problem. Asymptotic for the MKdV equation”, Ann. Math., 137 (1993), 295–368 | DOI

[18] P. Deift, A. Its, X. Zhou, “Long-time asymptotics for integrable nonlinear wave equations”, Important Developments of Soliton Theory, eds. A. S. Fokas, V. E. Zakharov, Springer, Berlin, 1993, 181–204 | Zbl

[19] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | MR | Zbl

[20] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 3, Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR | Zbl

[21] P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, New York, 1971

[22] A. V. Mikhailov, “The Landau–Lifshitz equation and the Riemann-boundary problem on a torus”, Phys. Lett., 92:2 (1982), 51–55 | DOI

[23] Yu. L. Rodin, “The Riemann boundary problem and the inverse scattering problem for the Landau–Lifshitz equation”, Phys. D, 11:1–2 (1984), 90–108 | DOI

[24] A. V. Mikhailov, “Integrable magnetic models”, Solitons, Modern Problems in Condensed Matter Sciences, 17, eds. S. E. Trullinger, V. E. Zakharov, V. L. Porkovskii, Elsevier, Amsterdam, 1986, 623–690 | DOI

[25] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[26] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[27] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge, “The design and verification of MuMax3”, AIP Adv., 4:10 (2014), 107133, 23 pp., arXiv: 1406.7635 | DOI