Relaxing solitons of a biaxial ferromagnet
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 54-79
Voir la notice de l'article provenant de la source Math-Net.Ru
We use the Riemann problem on a torus to obtain and analyze new analytic solutions of the Landau–Lifshitz model that describe the nonlinear dynamics of solitons of a biaxial ferromagnet in the field of dispersive spin waves. We show that nonlinear interference of solitons and waves leads to nonadiabatic relaxation oscillations of solitons. Formulas are obtained that determine the changes in the frequency and velocity of solitons in the radiation field. Collisions of relaxing solitons on a spin-wave background are analyzed.
Keywords:
Landau–Lifshitz equation, Riemann problem, dispersing waves.
Mots-clés : biaxial ferromagnet, solitons
Mots-clés : biaxial ferromagnet, solitons
@article{TMF_2022_210_1_a3,
author = {V. V. Kiselev and S. Batalov},
title = {Relaxing solitons of a biaxial ferromagnet},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {54--79},
publisher = {mathdoc},
volume = {210},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a3/}
}
V. V. Kiselev; S. Batalov. Relaxing solitons of a biaxial ferromagnet. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 54-79. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a3/