Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 38-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a detailed discussion of a nonlocal derivative nonlinear Schrödinger (NL-DNLS) equation with zero boundary conditions at infinity in terms of the inverse scattering transform. The direct scattering problem involves discussions of the analyticity, symmetries, and asymptotic behavior of the Jost solutions and scattering coefficients, and the distribution of the discrete spectrum points. Because of the symmetries of the NL-DNLS equation, the discrete spectrum is different from those for DNLS-type equations. The inverse scattering problem is solved by the method of a matrix Riemann–Hilbert problem. The reconstruction formula, the trace formula, and explicit solutions are presented. The soliton solutions with special parameters for the NL-DNLS equation with a reflectionless potential are obtained, which may have singularities.
Keywords: nonlocal derivative nonlinear Schrödinger equation, zero boundary conditions, symmetry properties, matrix Riemann–Hilbert problem, singularity.
@article{TMF_2022_210_1_a2,
     author = {Xinxin Ma and Yonghui Kuang},
     title = {Inverse scattering transform for a nonlocal derivative nonlinear {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {38--53},
     year = {2022},
     volume = {210},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a2/}
}
TY  - JOUR
AU  - Xinxin Ma
AU  - Yonghui Kuang
TI  - Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 38
EP  - 53
VL  - 210
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a2/
LA  - ru
ID  - TMF_2022_210_1_a2
ER  - 
%0 Journal Article
%A Xinxin Ma
%A Yonghui Kuang
%T Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 38-53
%V 210
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a2/
%G ru
%F TMF_2022_210_1_a2
Xinxin Ma; Yonghui Kuang. Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 38-53. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a2/

[1] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Physics, 748, Springer, Berlin, Heidelberg, 2008 | DOI | MR

[2] W.-X. Ma, Y. You, “Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions”, Trans. Amer. Math. Soc., 357:5 (2005), 1753–1778 | DOI | MR

[3] X.-R. Hu, S.-Y. Lou, Y. Chen, “Explicit solutions from eigenfunction symmetry of the Korteweg–de Vries equation”, Phys. Rev. E, 85:5 (2012), 056607, 8 pp. | DOI

[4] V. N. Serkin, A. Hasegava, “Novel soliton solutions of the nonlinear Schrödinger equation model”, Phys. Rev. Lett., 85:21 (2000), 4502–4505 | DOI

[5] B. Guo, L. Ling, Q. P. Liu, “Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions”, Phys. Rev. E, 85:2 (2012), 026607, 9 pp. | DOI

[6] P. Felmer, A. Quaas, J. Tan, “Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian”, Proc. Roy Soc. Edinburgh Sect. A, 142:6 (2012), 1237–1262 | DOI | MR

[7] D. J. Benney, A. C. Newell, “Propagation of nonlinear wave envelopes”, J. Math. Phys., 46:1–4 (1967), 133–139 | DOI | MR

[8] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI

[9] M. J. Ablowitz, Z. H. Musslimani, “Integrable discrete PT symmetric model”, Phys. Rev. E, 90:3 (2014), 032912, 5 pp. | DOI

[10] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear equations”, Stud. Appl. Math., 139:1 (2017), 7–59 | DOI | MR

[11] J. Yang, “General $N$-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations”, Phys. Lett. A, 383:4 (2019), 328–337 | DOI | MR

[12] B. Yang, J. Yang, “Transformations between nonlocal and local integrable equations”, Stud. Appl. Math., 140:2 (2018), 178–201 | DOI | MR

[13] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR

[14] V. S. Gerdjikov, A. Saxena, “Complete integrability of nonlocal nonlinear Schrödinger equation”, J. Math. Phys., 58:1 (2017), 013502, 33 pp. | DOI | MR

[15] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR

[16] G. Zhang, Z. Yan, “The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: inverse scattering transforms and $N$-double-pole solutions”, J. Nonlinear Sci., 30:6 (2020), 3089–3127 | DOI | MR

[17] M. J. Ablowitz, G. Biondini, B. Prinari, “Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions”, Inverse Problems, 23:4 (2007), 1711–1758 | DOI | MR

[18] G. Biondini, G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR

[19] M. J. Ablowitz, X.-D. Luo, Z. H. Musslimani, “Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 59:1 (2018), 011501, 42 pp. | DOI | MR

[20] B. Prinari, M. J. Ablowitz, G. Biondini, “Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions”, J. Math. Phys., 47:6 (2006), 063508, 33 pp. | DOI | MR

[21] J.-L. Ji, Z.-N. Zhu, “Soliton solutions of an integrable nonlocal modified Korteweg–de Vries equation through inverse scattering transform”, J. Math. Anal. Appl., 453:2 (2017), 973–984 | DOI | MR

[22] J. Wu, “Riemann–Hilbert approach and nonlinear dynamics in the nonlocal defocusing nonlinear Schrödinger equation”, Eur. Phys. J. Plus, 135:6 (2020), 523, 13 pp. | DOI

[23] G. Biondini, D. Kraus, “Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions”, SIAM J. Math. Anal., 47:1 (2015), 706–757 | DOI | MR

[24] B. Zhang, E. Fan, “Riemann–Hilbert approach for a Schrödinger-type equation with nonzero boundary conditions”, Modern Phys. Lett. B, 35:12 (2021), 2150208, 32 pp. | DOI | MR

[25] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI

[26] B. Guo, L. Ling, “Riemann–Hilbert approach and $N$-soliton formula for coupled derivative Schrödinger equation”, J. Math. Phys., 53:7 (2012), 073506, 20 pp. | DOI | MR

[27] D.-S. Wang, X. Wang, “Long-time asymptotics and the bright $N$-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach”, Nonlinear Anal. Real World Appl., 41 (2018), 334–361 | DOI | MR

[28] X. Geng, J. Wu, “Riemann–Hilbert approach and $N$-soliton solutions for a generalized Sasa–Satsuma equation”, Wave Motion, 60 (2016), 62–72 | DOI | MR

[29] Q. Cheng, E. Fan, “Long-time asymptotics for a mixed nonlinear Schrödinger equation with the Schwartz initial data”, J. Math. Anal. Appl., 489:2 (2020), 124188, 24 pp. | DOI | MR

[30] S. Chen, Z. Yan, “Long-time asymptotics of solutions for the coupled dispersive AB system with initial value problems”, J. Math. Anal. Appl., 498:2 (2021), 124966, 31 pp. | DOI | MR

[31] D. J. Kaup, A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 798–801 | DOI | MR

[32] G.-Q. Zhou, N.-N. Huang, “An $N$-soliton solution to the DNLS equation based on revised inverse scattering transform”, J. Phys. A: Math. Theor., 40:45 (2007), 13607–13623 | DOI | MR

[33] G. Zhou, “A newly revised inverse scattering transform for DNLS$^{+}$ equation under nonvanishing boundary condition”, Wuhan Univ. J. Nat. Sci., 17:2 (2012), 144–150 | DOI | MR

[34] V. M. Lashkin, “$N$-soliton solutions and perturbation theory for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions”, J. Phys. A: Math. Theor., 40:23 (2007), 6119–6132 | DOI | MR

[35] X.-J. Chen, W. K. Lam, “Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions”, Phys. Rev. E, 69:6 (2004), 066604, 8 pp. | DOI | MR

[36] C.-N. Yang, J.-L. Yu, H. Cai, N.-N. Huang, “Inverse scattering transform for the derivative nonlinear Schrödinger equation”, Chinese Phys. Lett., 25:2 (2008), 421–424 | DOI

[37] Z.-X. Zhou, “Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation”, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 480–488, arXiv: 1612.04892 | DOI | MR