@article{TMF_2022_210_1_a2,
author = {Xinxin Ma and Yonghui Kuang},
title = {Inverse scattering transform for a nonlocal derivative nonlinear {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {38--53},
year = {2022},
volume = {210},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a2/}
}
TY - JOUR AU - Xinxin Ma AU - Yonghui Kuang TI - Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 38 EP - 53 VL - 210 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a2/ LA - ru ID - TMF_2022_210_1_a2 ER -
Xinxin Ma; Yonghui Kuang. Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 38-53. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a2/
[1] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Physics, 748, Springer, Berlin, Heidelberg, 2008 | DOI | MR
[2] W.-X. Ma, Y. You, “Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions”, Trans. Amer. Math. Soc., 357:5 (2005), 1753–1778 | DOI | MR
[3] X.-R. Hu, S.-Y. Lou, Y. Chen, “Explicit solutions from eigenfunction symmetry of the Korteweg–de Vries equation”, Phys. Rev. E, 85:5 (2012), 056607, 8 pp. | DOI
[4] V. N. Serkin, A. Hasegava, “Novel soliton solutions of the nonlinear Schrödinger equation model”, Phys. Rev. Lett., 85:21 (2000), 4502–4505 | DOI
[5] B. Guo, L. Ling, Q. P. Liu, “Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions”, Phys. Rev. E, 85:2 (2012), 026607, 9 pp. | DOI
[6] P. Felmer, A. Quaas, J. Tan, “Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian”, Proc. Roy Soc. Edinburgh Sect. A, 142:6 (2012), 1237–1262 | DOI | MR
[7] D. J. Benney, A. C. Newell, “Propagation of nonlinear wave envelopes”, J. Math. Phys., 46:1–4 (1967), 133–139 | DOI | MR
[8] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI
[9] M. J. Ablowitz, Z. H. Musslimani, “Integrable discrete PT symmetric model”, Phys. Rev. E, 90:3 (2014), 032912, 5 pp. | DOI
[10] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear equations”, Stud. Appl. Math., 139:1 (2017), 7–59 | DOI | MR
[11] J. Yang, “General $N$-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations”, Phys. Lett. A, 383:4 (2019), 328–337 | DOI | MR
[12] B. Yang, J. Yang, “Transformations between nonlocal and local integrable equations”, Stud. Appl. Math., 140:2 (2018), 178–201 | DOI | MR
[13] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR
[14] V. S. Gerdjikov, A. Saxena, “Complete integrability of nonlocal nonlinear Schrödinger equation”, J. Math. Phys., 58:1 (2017), 013502, 33 pp. | DOI | MR
[15] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR
[16] G. Zhang, Z. Yan, “The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: inverse scattering transforms and $N$-double-pole solutions”, J. Nonlinear Sci., 30:6 (2020), 3089–3127 | DOI | MR
[17] M. J. Ablowitz, G. Biondini, B. Prinari, “Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions”, Inverse Problems, 23:4 (2007), 1711–1758 | DOI | MR
[18] G. Biondini, G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR
[19] M. J. Ablowitz, X.-D. Luo, Z. H. Musslimani, “Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 59:1 (2018), 011501, 42 pp. | DOI | MR
[20] B. Prinari, M. J. Ablowitz, G. Biondini, “Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions”, J. Math. Phys., 47:6 (2006), 063508, 33 pp. | DOI | MR
[21] J.-L. Ji, Z.-N. Zhu, “Soliton solutions of an integrable nonlocal modified Korteweg–de Vries equation through inverse scattering transform”, J. Math. Anal. Appl., 453:2 (2017), 973–984 | DOI | MR
[22] J. Wu, “Riemann–Hilbert approach and nonlinear dynamics in the nonlocal defocusing nonlinear Schrödinger equation”, Eur. Phys. J. Plus, 135:6 (2020), 523, 13 pp. | DOI
[23] G. Biondini, D. Kraus, “Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions”, SIAM J. Math. Anal., 47:1 (2015), 706–757 | DOI | MR
[24] B. Zhang, E. Fan, “Riemann–Hilbert approach for a Schrödinger-type equation with nonzero boundary conditions”, Modern Phys. Lett. B, 35:12 (2021), 2150208, 32 pp. | DOI | MR
[25] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI
[26] B. Guo, L. Ling, “Riemann–Hilbert approach and $N$-soliton formula for coupled derivative Schrödinger equation”, J. Math. Phys., 53:7 (2012), 073506, 20 pp. | DOI | MR
[27] D.-S. Wang, X. Wang, “Long-time asymptotics and the bright $N$-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach”, Nonlinear Anal. Real World Appl., 41 (2018), 334–361 | DOI | MR
[28] X. Geng, J. Wu, “Riemann–Hilbert approach and $N$-soliton solutions for a generalized Sasa–Satsuma equation”, Wave Motion, 60 (2016), 62–72 | DOI | MR
[29] Q. Cheng, E. Fan, “Long-time asymptotics for a mixed nonlinear Schrödinger equation with the Schwartz initial data”, J. Math. Anal. Appl., 489:2 (2020), 124188, 24 pp. | DOI | MR
[30] S. Chen, Z. Yan, “Long-time asymptotics of solutions for the coupled dispersive AB system with initial value problems”, J. Math. Anal. Appl., 498:2 (2021), 124966, 31 pp. | DOI | MR
[31] D. J. Kaup, A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 798–801 | DOI | MR
[32] G.-Q. Zhou, N.-N. Huang, “An $N$-soliton solution to the DNLS equation based on revised inverse scattering transform”, J. Phys. A: Math. Theor., 40:45 (2007), 13607–13623 | DOI | MR
[33] G. Zhou, “A newly revised inverse scattering transform for DNLS$^{+}$ equation under nonvanishing boundary condition”, Wuhan Univ. J. Nat. Sci., 17:2 (2012), 144–150 | DOI | MR
[34] V. M. Lashkin, “$N$-soliton solutions and perturbation theory for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions”, J. Phys. A: Math. Theor., 40:23 (2007), 6119–6132 | DOI | MR
[35] X.-J. Chen, W. K. Lam, “Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions”, Phys. Rev. E, 69:6 (2004), 066604, 8 pp. | DOI | MR
[36] C.-N. Yang, J.-L. Yu, H. Cai, N.-N. Huang, “Inverse scattering transform for the derivative nonlinear Schrödinger equation”, Chinese Phys. Lett., 25:2 (2008), 421–424 | DOI
[37] Z.-X. Zhou, “Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation”, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 480–488, arXiv: 1612.04892 | DOI | MR