Mots-clés : multi-soliton solutions
@article{TMF_2022_210_1_a1,
author = {Xiu-Bin Wang and Bo Han},
title = {The general fifth-order nonlinear {Schr\"odinger} equation with nonzero boundary conditions: {Inverse} scattering transform and multisoliton solutions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {11--37},
year = {2022},
volume = {210},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a1/}
}
TY - JOUR AU - Xiu-Bin Wang AU - Bo Han TI - The general fifth-order nonlinear Schrödinger equation with nonzero boundary conditions: Inverse scattering transform and multisoliton solutions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 11 EP - 37 VL - 210 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a1/ LA - ru ID - TMF_2022_210_1_a1 ER -
%0 Journal Article %A Xiu-Bin Wang %A Bo Han %T The general fifth-order nonlinear Schrödinger equation with nonzero boundary conditions: Inverse scattering transform and multisoliton solutions %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 11-37 %V 210 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a1/ %G ru %F TMF_2022_210_1_a1
Xiu-Bin Wang; Bo Han. The general fifth-order nonlinear Schrödinger equation with nonzero boundary conditions: Inverse scattering transform and multisoliton solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 1, pp. 11-37. http://geodesic.mathdoc.fr/item/TMF_2022_210_1_a1/
[1] G. Yang, Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium”, Opt. Lett., 9:11 (1984), 510–512 | DOI
[2] D. Anderson, M. Lisak, “Nonlinear asymmetric self-phase modulation and self-steepending of pulses in long optical waveguides”, Phys. Rev. A, 27:3 (1983), 1393–1398 | DOI
[3] N. Sasa, J. Satsuma, “New-type of soliton solutions for a higher-order nonlinear Schrödinger equation”, J. Phys. Soc. Japan, 60:2 (1981), 409–417 | DOI | MR
[4] T. Kano, “Normal form of nonlinear Schrödinger equation”, J. Phys. Soc. Japan, 58:12 (1989), 4322–4328 | DOI | MR
[5] A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev, “Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms”, Phys. Rev. E, 90:3 (2014), 032922, 9 pp. | DOI
[6] S. Y. Chen, Z. Y. Yan, “The higher-order nonlinear Schrödinger equation with non-zero boundary conditions: robust inverse scattering transform, breathers, and rogons”, Phys. Lett. A, 15:29 (2019), 125906, 11 pp. | DOI | MR
[7] B. Prinari, F. Demontis, S. Li, T. P. Horikis, “Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions”, Phys. D, 368 (2018), 22–49 | DOI | MR
[8] M. J. Ablowitz, G. Biondini, B. Prinari, “Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions”, Inverse Problems, 23:4 (2009), 1711–1758 | DOI | MR
[9] G. Biondini, G. Kovačič, G. Gregor, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR
[10] M. Pichler, G. Biondini, “On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles”, IMA J. Appl. Math., 82:1 (2017), 131–151 | DOI | MR
[11] F. Demontis, B. Prinari, C. van der Mee, F. Vitale, “The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions”, Stud. Appl. Math., 131:1 (2013), 1–40 | DOI | MR
[12] B. Prinari, F. Vitale, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with one-sided nonzero boundary condition”, Algebraic and Analytic Aspects of Integrable Systems and Painlevé Equations (Baltimore, Maryland, USA, January 18, 2014), Contemporary Mathematics, 651, eds. A. Dzhamay, K. Maruno, C. M. Ormerod, AM, Providence, RI, 2015, 157–194 | DOI | MR | Zbl
[13] F. Demontis, B. Prinari, C. van der Mee, F. Vitale, “The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions”, J. Math. Phys., 55:10 (2014), 101505, 40 pp. | DOI | MR
[14] G. Biondini, E. Fagerstrom, B. Prinari, “Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions”, Phys. D, 333 (2016), 117–136 | DOI | MR
[15] M. D. Ablovits, Bao-Fen Fen, Syui-Dan Lo, Z. Musslimani, “Metod obratnoi zadachi rasseyaniya dlya nelokalnogo nelineinogo uravneniya Shredingera s obrascheniem prostranstva-vremeni”, TMF, 196:3 (2018), 343–372 | DOI | DOI | MR
[16] G. Q. Zhang, Z. Y. Yan, “Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions”, Phys. D, 402 (2020), 132170, 14 pp. | DOI | MR
[17] G. Q. Zhang, S. Y. Chen, Z. Y. Yan, “Focusing and defocusing Hirota equations with non-zero boundary conditions: inverse scattering transforms and soliton solutions”, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 104927, 22 pp. | DOI | MR
[18] X.-B. Wang, B. Han, “Characteristics of rogue waves on a soliton background in the general three-component nonlinear Schrödinger equation”, Appl. Math. Model., 88 (2020), 688–700 | DOI | MR
[19] X.-B. Wang, B. Han, “Inverse scattering transform of an extended nonlinear Schrödinger equation with nonzero boundary conditions and its multisoliton solutions”, J. Math. Anal. Appl., 487:1 (2020), 123968, 20 pp. | DOI | MR
[20] P. Prinari, G. Biondini, A. D. Trubatch, “Inverse scattering transform for the multi-component nonlinear Schrödinger equation with nonzero boundary conditions”, Stud. Appl. Math., 126:3 (2011), 245–302 | DOI | MR
[21] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14:7 (1973), 805–809 | DOI | MR
[22] J. S. He, L. H. Wang, L. J. Li, K. Porsezian, R. Erdélyi, “Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation”, Phys. Rev. E, 89:6 (2014), 062917, 19 pp., arXiv: 1405.7845 | DOI
[23] S. F. Tian, “Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method”, J. Phys. A: Math. Theor., 50:39 (2017), 395204, 32 pp. | DOI | MR
[24] M. Lakshmanan, K. Porsezian, M. Daniel, “Effect of discreteness on the continuum limit of the Heisenberg spin chain”, Phys. Lett. A, 133:8 (1988), 483–488 | DOI
[25] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR
[26] X. G. Geng, Y. Y. Zhai, H. H. Dai, “Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy”, Adv. Math., 263 (2014), 123–153 | DOI | MR
[27] K. Porsezian, M. Daniel, M. Lakshmanan, “On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain”, J. Math. Phys., 33:5 (1992), 1807–1816 | DOI | MR
[28] W.-Q. Peng, S.-F. Tian, X.-B. Wang, T.-T. Zhang, “Characteristics of rogue waves on a periodic background for the Hirota equation”, Wave Motion, 93 (2020), 102454, 10 pp. | DOI | MR
[29] X.-B. Wang, S.-F. Tian, T.-T. Zhang, “Characteristics of the breather and rogue waves in a $(2+1)$-dimensional nonlinear Schrödinger equation”, Proc. Amer. Math. Soc., 146:8 (2018), 3353–3365 | DOI | MR
[30] X.-B. Wang, B. Han, “A Riemann-Hilbert approach to a generalized nonlinear Schrödinger equation on the quarter plane”, Math. Phys. Anal. Geom., 23:2 (2020), 25, 23 pp. | DOI | MR
[31] X.-B. Wang, B. Han, “Application of the Riemann–Hilbert method to the vector modified Korteweg–de Vries equation”, Nonlinear Dyn., 99 (2020), 1363–1377 | DOI
[32] Y. Yang, Z. Yan, B. A. Malomed, “Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation”, Chaos, 25:10 (2015), 103112, 9 pp., arXiv: 1509.05886 | DOI | MR
[33] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR | Zbl
[34] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR
[35] M. J. Ablowitz, B. Prinari, A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, Cambridge Univ. Press, Cambridge, 2004 | MR
[36] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl
[37] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. W. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI
[38] D.-S. Wang, X. Wang, “Long-time asymptotics and the bright $N$-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach”, Nonlinear Anal. Real World Appl., 41 (2018), 334–361 | DOI | MR
[39] W.-X. Ma, “The inverse scattering transform and soliton solutions of a combined modified Korteweg–de Vries equation”, J. Math. Anal. Appl., 471:1–2 (2019), 796–811 | DOI | MR
[40] W.-X. Ma, “Riemann–Hilbert problems and $N$-soliton solutions for a coupled mKdV system”, J. Geom. Phys., 132 (2018), 45–54 | DOI | MR
[41] W.-X. Ma, “Riemann–Hilbert problems of a six-component mKdV system and its soliton solutions”, Acta Math. Sci., 39:2 (2019), 509–523 | DOI | MR
[42] W.-X. Ma, “Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations”, Proc. Amer. Math. Soc., 149:1 (2021), 251–263 | DOI | MR
[43] Syu-Bin Van, Bo Khan, “Chisto solitonnye resheniya nelokalnogo nelineinogo uravneniya Shredingera tipa Kundu”, TMF, 206:1 (2021), 47–78 | DOI | DOI | MR
[44] Chzhi-Tsyan Li, Shou-Fu Tyan, Vei-Tsi Pen, Tszin-Tsze Yan, “Metod obratnoi zadachi rasseyaniya i klassifikatsiya solitonnykh reshenii nelineinogo uravneniya Shredingera–Maksvella–Blokha vysshego poryadka”, TMF, 203:3 (2020), 323–341 | DOI | DOI | MR
[45] B. Yang, Y. Chen, “High-order soliton matrices for Sasa–Satsuma equation via local Riemann–Hilbert problem”, Nonlinear Anal. Real World Appl., 45 (2019), 918–941 | DOI | MR
[46] X.-B. Wang, B. Han, “The pair-transition-coupled nonlinear Schrödinger equation: The Riemann–Hilbert problem and $N$-soliton solutions”, Eur. Phys. J. Plus, 134:2 (2019), 78, 6 pp. | DOI
[47] B. Guo, L. Ling, “Riemann–Hilbert approach and $N$-soliton formula for coupled derivative Schrödinger equation”, J. Math. Phys., 53:7 (2012), 073506, 20 pp. | DOI | MR
[48] J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Mathematical Modeling and Computation, 16, SIAM, Philadelphia, PA, 2010 | DOI | MR
[49] D. S. Wang, D. J. Zhang, J. Yang, “Integrable properties of the general coupled nonlinear Schrödinger equations”, J. Math. Phys., 51:2 (2010), 023510, 17 pp. | DOI | MR