@article{TMF_2021_209_3_a8,
author = {A. V. Pereskokov},
title = {Asymptotics of the~spectrum of a {Hartree-type} operator with a~screened {Coulomb} self-action potential near the~upper boundaries of spectral clusters},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {543--560},
year = {2021},
volume = {209},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a8/}
}
TY - JOUR AU - A. V. Pereskokov TI - Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 543 EP - 560 VL - 209 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a8/ LA - ru ID - TMF_2021_209_3_a8 ER -
%0 Journal Article %A A. V. Pereskokov %T Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 543-560 %V 209 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a8/ %G ru %F TMF_2021_209_3_a8
A. V. Pereskokov. Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 543-560. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a8/
[1] P. Debye, E. Hückel, “Zur Theorie der Elektrolyte”, Phys. Z., 24:9 (1923), 185–206 | Zbl
[2] N. Bohr, “The penetration of atomic particles through matter”, Det Kgl. Danske Vidensk. Selsk. Math.-Fys. Medd., 18:8 (1948), 1–114 | Zbl
[3] H. Jukawa, “On the interaction of elementary particles. I”, Proc. Phys. Math. Soc. Japan, 17:2 (1935), 48–57
[4] N. N. Bogolyubov, “Ob odnoi novoi forme adiabaticheskoi teorii vozmuschenii v zadache o vzaimodeistvii chastitsy s kvantovym polem”, Ukr. matem. zhurn., 2:2 (1950), 3–24
[5] L. P. Pitaevskii, “Kondensatsiya Boze–Einshteina v magnitnykh lovushkakh. Vvedenie v teoriyu”, UFN, 168:6 (1998), 641–653 | DOI | DOI
[6] S. A. Achmanov, R. V. Hocklov, A. P. Suchorukov, “Self-defocusing and self-modulation in nonlinear media”, Laserhandbuch, v. 2, eds. F. T. Arecchi, E. O. Schulz-Dubois, North-Holland, Amsterdam, 1972, 5–108
[7] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | DOI | MR | MR | Zbl
[8] I. V. Simenog, “Ob asimptotike resheniya statsionarnogo nelineinogo uravneniya Khartri”, TMF, 30:3 (1977), 408–414 | DOI | MR
[9] M. V. Karasev, A. V. Pereskokov, “Asimptoticheskie resheniya uravnenii Khartri, sosredotochennye vblizi malomernykh podmnogoobrazii. II. Lokalizatsiya v ploskikh diskakh”, Izv. RAN. Ser. matem., 65:6 (2001), 57–98 | DOI | DOI | MR | Zbl
[10] V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Kvaziklassicheskie spektralnye serii operatora tipa Khartri, otvechayuschie tochke pokoya klassicheskoi sistemy Gamiltona–Erenfesta”, TMF, 150:1 (2007), 26–40 | DOI | DOI | MR | Zbl
[11] I. Bryuning, S. Yu. Dobrokhotov, R. V. Nekrasov, A. I. Shafarevich, “Rasprostranenie gaussovykh volnovykh paketov v kvantovykh tonkikh periodicheskikh volnovodakh s nelokalnoi nelineinostyu”, TMF, 155:2 (2008), 215–235 | DOI | DOI | MR | Zbl
[12] A. V. Pereskokov, “Kvaziklassicheskaya asimptotika spektra operatora tipa Khartri vblizi verkhnikh granits spektralnykh klasterov”, TMF, 178:1 (2014), 88–106 | DOI | DOI | MR | Zbl
[13] A. V. Pereskokov, “Asimptotika spektra operatora Khartri vblizi verkhnikh granits spektralnykh klasterov. Asimptoticheskie resheniya, lokalizovannye vblizi okruzhnosti”, TMF, 183:1 (2015), 78–89 | DOI | DOI | MR
[14] A. V. Pereskokov, “Kvaziklassicheskaya asimptotika spektra dvumernogo operatora Khartri vblizi verkhnikh granits spektralnykh klasterov”, TMF, 187:1 (2016), 74–87 | DOI | DOI | MR
[15] L. Shiff, Kvantovaya mekhanika, IL, M., 1957 | Zbl
[16] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR
[17] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 1, Elementarnye funktsii, Nauka, M., 1981 | MR | MR | Zbl
[18] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl | Zbl
[19] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR