Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 543-560 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the eigenvalue problem for a Hartree-type operator with a screened Coulomb self-action potential and with a small parameter multiplying the nonlinearity. We obtain asymptotic eigenvalues and asymptotic eigenfunctions near the upper boundaries of spectral clusters that form near the energy levels of the unperturbed operator.
Keywords: spectral cluster, self-consistent field, asymptotic eigenvalue, asymptotic eigenfunction, solvability condition.
@article{TMF_2021_209_3_a8,
     author = {A. V. Pereskokov},
     title = {Asymptotics of the~spectrum of a {Hartree-type} operator with a~screened {Coulomb} self-action potential near the~upper boundaries of spectral clusters},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {543--560},
     year = {2021},
     volume = {209},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a8/}
}
TY  - JOUR
AU  - A. V. Pereskokov
TI  - Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 543
EP  - 560
VL  - 209
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a8/
LA  - ru
ID  - TMF_2021_209_3_a8
ER  - 
%0 Journal Article
%A A. V. Pereskokov
%T Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 543-560
%V 209
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a8/
%G ru
%F TMF_2021_209_3_a8
A. V. Pereskokov. Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 543-560. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a8/

[1] P. Debye, E. Hückel, “Zur Theorie der Elektrolyte”, Phys. Z., 24:9 (1923), 185–206 | Zbl

[2] N. Bohr, “The penetration of atomic particles through matter”, Det Kgl. Danske Vidensk. Selsk. Math.-Fys. Medd., 18:8 (1948), 1–114 | Zbl

[3] H. Jukawa, “On the interaction of elementary particles. I”, Proc. Phys. Math. Soc. Japan, 17:2 (1935), 48–57

[4] N. N. Bogolyubov, “Ob odnoi novoi forme adiabaticheskoi teorii vozmuschenii v zadache o vzaimodeistvii chastitsy s kvantovym polem”, Ukr. matem. zhurn., 2:2 (1950), 3–24

[5] L. P. Pitaevskii, “Kondensatsiya Boze–Einshteina v magnitnykh lovushkakh. Vvedenie v teoriyu”, UFN, 168:6 (1998), 641–653 | DOI | DOI

[6] S. A. Achmanov, R. V. Hocklov, A. P. Suchorukov, “Self-defocusing and self-modulation in nonlinear media”, Laserhandbuch, v. 2, eds. F. T. Arecchi, E. O. Schulz-Dubois, North-Holland, Amsterdam, 1972, 5–108

[7] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | DOI | MR | MR | Zbl

[8] I. V. Simenog, “Ob asimptotike resheniya statsionarnogo nelineinogo uravneniya Khartri”, TMF, 30:3 (1977), 408–414 | DOI | MR

[9] M. V. Karasev, A. V. Pereskokov, “Asimptoticheskie resheniya uravnenii Khartri, sosredotochennye vblizi malomernykh podmnogoobrazii. II. Lokalizatsiya v ploskikh diskakh”, Izv. RAN. Ser. matem., 65:6 (2001), 57–98 | DOI | DOI | MR | Zbl

[10] V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Kvaziklassicheskie spektralnye serii operatora tipa Khartri, otvechayuschie tochke pokoya klassicheskoi sistemy Gamiltona–Erenfesta”, TMF, 150:1 (2007), 26–40 | DOI | DOI | MR | Zbl

[11] I. Bryuning, S. Yu. Dobrokhotov, R. V. Nekrasov, A. I. Shafarevich, “Rasprostranenie gaussovykh volnovykh paketov v kvantovykh tonkikh periodicheskikh volnovodakh s nelokalnoi nelineinostyu”, TMF, 155:2 (2008), 215–235 | DOI | DOI | MR | Zbl

[12] A. V. Pereskokov, “Kvaziklassicheskaya asimptotika spektra operatora tipa Khartri vblizi verkhnikh granits spektralnykh klasterov”, TMF, 178:1 (2014), 88–106 | DOI | DOI | MR | Zbl

[13] A. V. Pereskokov, “Asimptotika spektra operatora Khartri vblizi verkhnikh granits spektralnykh klasterov. Asimptoticheskie resheniya, lokalizovannye vblizi okruzhnosti”, TMF, 183:1 (2015), 78–89 | DOI | DOI | MR

[14] A. V. Pereskokov, “Kvaziklassicheskaya asimptotika spektra dvumernogo operatora Khartri vblizi verkhnikh granits spektralnykh klasterov”, TMF, 187:1 (2016), 74–87 | DOI | DOI | MR

[15] L. Shiff, Kvantovaya mekhanika, IL, M., 1957 | Zbl

[16] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[17] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 1, Elementarnye funktsii, Nauka, M., 1981 | MR | MR | Zbl

[18] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl | Zbl

[19] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR