Keywords: supersymmetry, thermofield dynamics.
@article{TMF_2021_209_3_a6,
author = {M. A. S. Trindade and S. Floquet},
title = {Majorana fermions, supersymmetry, and thermofield dynamics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {502--514},
year = {2021},
volume = {209},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a6/}
}
M. A. S. Trindade; S. Floquet. Majorana fermions, supersymmetry, and thermofield dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 502-514. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a6/
[1] E. Majorana, “Teoria simmetrica dell'elettrone e del positrone”, Nuovo Cimento, 14:4 (1937), 171–184 | DOI
[2] A. Gando, Y. Gando, T. Hachiya et al. [KamLAND-Zen Collab.], “Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen”, Phys. Rev. Lett., 117:8 (2016), 082503, 6 pp. | DOI
[3] A. Yu. Kitaev, “Unpaired Majorana fermions in quantum wires”, UFN, 171, prilozhenie k No 10 (2001), 131–136 | DOI
[4] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, M. P. A. Fisher, “Non-Abelian statistics and topological quantum information processing in 1D wire networks”, Nature Phys., 7:5 (2011), 412–417 | DOI
[5] Z. H. Wang, Topological Quantum Computation, Conference Board of the Mathematical Sciences. Regional Conference Series in Mathematics, 112, AMS, Providence, RI, 2008 | MR
[6] L.-W. Yu, M.-L. Ge, “More about the doubling degeneracy operators associated with Majorana fermions and Yang–Baxter equation”, Sci. Rep., 5 (2015), 8102, 7 pp. | DOI
[7] X.-M. Zhao, J. Yu, J. He, Q.-B. Chen, Y. Liang, S.-P. Kou, “The simulation of non-Abelian statistics of Majorana fermions in Ising chain with Z2 symmetry”, Modern Phys. Lett. B, 31:11 (2017), 1750123, 10 pp., arXiv: 1602.07444 | DOI | MR
[8] L. Long, Y. Yue, “An anyon model in a toric honeycomb lattice”, Commun. Theor. Phys., 55:1 (2011), 80–84, arXiv: 1006.0804 | DOI
[9] A. Yu. Kitaev, “Fault-tolerant quantum computation by anyons”, Ann. Phys., 303:1 (2003), 2–30 | DOI
[10] A. Yu. Kitaev, “Anyons in an exactly solved model and beyond”, Ann. Phys., 321:1 (2006), 2–111, arXiv: cond-mat/0506438 | DOI
[11] C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma, “Non-Abelian anyons and topological quantum computation”, Rev. Modern Phys., 80:3 (2008), 1083–1159 | DOI
[12] J. Lee, F. Wilczek, “Algebra of Majorana doubling”, Phys. Rev. Lett., 111:22 (2013), 226402, 4 pp., arXiv: 1307.3245 | DOI
[13] X.-L. Qi, T. L. Hughes, S. Raghu, S.-C. Zhang, “Time-reversal-invariant topological superconductors and superfluids in two and three dimensions”, Phys. Rev. Lett., 102:18 (2009), 187001, 4 pp., arXiv: 0803.3614 | DOI
[14] T. H. Hsieh, G. B. Halász, T. Grover, “All Majorana models with translation symmetry are supersymmetric”, Phys. Rev. Lett., 117:16 (2016), 166802, 6 pp., arXiv: 1604.08591 | DOI
[15] R. U. Haq, L. H. Kauffman, “$Z_2$ topological order and topological protection of Majorana fermion qubits”, Condens. Matter, 6:1 (2021), 11, 22 pp. | DOI
[16] L. Van Hove, “Supersymmetry and positive temperature for simple systems”, Nucl. Phys. B, 207:1 (1982), 15–28 | DOI
[17] R. Parthasarathy, R. Sridhar, “Supersymmetry in thermofield dynamics”, Phys. Lett. A, 279:1–2 (2001), 17–22 | DOI
[18] F. Khanna, A. P. C. Malbouisson, J. M. C. Malbouisson, A. E. Santana, Thermal Quantum Field Theory: Algebraic Aspects and Applications, World Sci., Singapore, 2009 | DOI
[19] V. G. Kac, “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR
[20] M. R. de Traubenberg, “Clifford algebras in physics”, Adv. Appl. Clifford Alg., 19:3–4 (2009), 869–908 | DOI
[21] M. Takesaki, Tomita's Theory of Modular Hilbert Algebras and its Applications, Lecture Notes in Mathematics, 128, Springer, Berlin, Heidelberg, 1970 | DOI
[22] I. Ojima, “Gauge fields at finite temperatures – ‘Thermo field dynamics’ and the KMS condition and their extension to gauge theories”, Ann. Phys., 137:1 (1981), 1–32 | DOI
[23] O. Bratelli, D. W. Robinson, Operators Algebras and Quantum Statistical Mechanics: Equilibrium States Models in Quantum Statistical Mechanics, v. 1, 2, Texts and Monographs in Physics, Springer, Berlin, 1997 | DOI
[24] A. E. Santana, A. M. Neto, J. D. M. Vianna, F. C. Khanna, “w$^{*}$-Algebra, Poincare group, and quantum kinetic theory”, Internat. J. Theor. Phys., 38:2 (1999), 641–651 | DOI
[25] M. Nilsen, I. Chang, Kvantovye vychisleniya i kvantovaya informatsiya, Mir, M., 2006 | MR | Zbl