Differential equations for the Majorana particle in $3+1$ and $1+1$ dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 475-501 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relativistic wave equation considered to mathematically describe the Majorana particle is the Dirac equation with a real Lorentz scalar potential plus the Majorana condition. Certainly, depending on the representation that one uses, the resulting differential equation changes. It could be a real or a complex system of coupled equations, or it could even be a single complex equation for a single component of the entire wave function. Any of these equations or systems of equations could be referred to as a Majorana equation or Majorana system of equations because it can be used to describe the Majorana particle. For example, in the Weyl representation in $3+1$ dimensions, we can have two nonequivalent explicitly covariant complex first-order equations; in contrast, in $1+1$ dimensions, we have a complex system of coupled equations. In any case, whichever equation or system of equations is used, the wave function that describes the Majorana particle in $3+1$ or $1+1$ dimensions is determined by four or two real quantities. The aim of this paper is to study and discuss all these issues from an algebraic standpoint, highlighting the similarities and differences that arise between these equations in the cases of $3+1$ and $1+1$ dimensions in the Dirac, Weyl, and Majorana representations. In addition, we rederive and use results that follow from a procedure already introduced by Case to obtain a two-component Majorana equation in $3+1$ dimensions. We for the first time introduce a similar procedure in $1+1$ dimensions and then use the obtained results.
Keywords: relativistic quantum mechanics of a single particle, Dirac representation, Weyl representation, Majorana representation.
Mots-clés : Dirac equation, equations for a Majorana particle
@article{TMF_2021_209_3_a5,
     author = {S. De Vincenzo},
     title = {Differential equations for {the~Majorana} particle in $3+1$ and $1+1$ dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {475--501},
     year = {2021},
     volume = {209},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a5/}
}
TY  - JOUR
AU  - S. De Vincenzo
TI  - Differential equations for the Majorana particle in $3+1$ and $1+1$ dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 475
EP  - 501
VL  - 209
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a5/
LA  - ru
ID  - TMF_2021_209_3_a5
ER  - 
%0 Journal Article
%A S. De Vincenzo
%T Differential equations for the Majorana particle in $3+1$ and $1+1$ dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 475-501
%V 209
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a5/
%G ru
%F TMF_2021_209_3_a5
S. De Vincenzo. Differential equations for the Majorana particle in $3+1$ and $1+1$ dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 475-501. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a5/

[1] E. Majorana, “Teoria simmetrica dell'elettrone e del positrone”, Il Nuovo Cimento, 14 (1937), 171–184 | DOI

[2] S. Esposito, “Searching for an equation: Dirac, Majorana and the others”, Ann. Phys., 327:6 (2012), 1617–1644 | DOI

[3] P. B. Pal, “Dirac, Majorana, and Weyl fermions”, Am. J. Phys., 79:5 (2011), 485–498 | DOI

[4] S. R. Elliott, M. Franz, “Colloquium: Majorana fermions in nuclear, particle, and solid-state physics”, Rev. Modern Phys., 87:1 (2015), 137–163 | DOI

[5] R. Aguado, “Majorana quasiparticles in condensed matter”, Rivista del Nuovo Cimento, 40:11 (2017), 523–593 | DOI

[6] S. De Vincenzo, C. Sánchez, “General boundary conditions for a Majorana single-particle in a box in $(1+1)$ dimensions”, Phys. Part. Nucl. Lett., 15:3 (2018), 257–268 | DOI

[7] R. Keil, C. Noh, A. Rai, S. Stutzer, S. Nolte, D. G. Angelakis, A. Szameit, “Optical simulation of charge conservation violation and Majorana dynamics”, Optica, 2:5 (2015), 454–459 | DOI

[8] K. M. Case, “Reformulation of the Majorana theory of the neutrino”, Phys. Rev., 107:1 (1957), 307–316 | DOI

[9] A. Aste, “A direct road to Majorana fields”, Symmetry, 2:4 (2010), 1776–1809 | DOI

[10] S. De Vincenzo, On wave equations for the Majorana particle in $(3+1)$ and $(1+1)$ dimensions, arXiv: 2007.03789

[11] A. Zee, Quantum Field Theory in a Nutshell, Princeton Univ. Press, Princeton, 2010

[12] J. J. Sakuray, Advanced Quantum Mechanics, Addison-Wesley, New York, 1967

[13] A. Messiah, Quantum Mechanics, v. II, North-Holland, Amsterdam, 1966

[14] W-H. Steeb, Problems in Theoretical Physics, v. II, BI-Wissenschaftsverlag, Mannhein, 1990; H. V. Henderson, F. Pukelsheim, S. R. Searle, “On the history of the Kronecker product”, Linear and Multilinear Algebra, 14:2 (1983), 113–120 | DOI

[15] M. H. Al-Hashimi, A. M. Shalaby, U.-J. Wiese, “Majorana fermions in a box”, Phys. Rev. D, 95:6 (2017), 065007, 14 pp. | DOI

[16] K. Johnson, “The M.I.T. bag model”, Acta Phys. Pol. B, 6:6 (1975), 865–892

[17] V. Alonso, S. De Vincenzo, L. Mondino, “On the boundary conditions for the Dirac equation”, Eur. J. Phys., 18:5 (1997), 315–320 | DOI

[18] W. Greiner, Relativistic Quantum Mechanics. Wave Equations, Springer, Berlin, 2000 | DOI

[19] S. De Vincenzo, “On real solutions of the Dirac equation for a one-dimensional Majorana particle”, Results Phys., 15 (2019), 102598, 8 pp. | DOI

[20] E. Marsch, “The two-component Majorana equation – Novel derivations and known symmetries”, J. Modern Phys., 2:10 (2011), 1109–1114 | DOI

[21] R. N. Mohapatra, P. B. Pal, Massive Neutrinos in Physics and Astrophysics, World Scientific Lecture Notes in Physics, 72, World Sci., Singapore, 2004 | DOI

[22] Y. F. Pérez, C. J. Quimbay, “Sistema relativista de dos niveles y oscilaciones de neutrinos de Majorana”, Revista Colombiana de Física, 44:2 (2012), 185–192

[23] C. Noh, B. M. Rodríguez-Lara, D. G. Angelakis, “Proposal for realization of the Majorana equation in a tabletop experiment”, Phys. Rev. A, 87:4 (2013), 040102, 5 pp. | DOI

[24] D. M. Gitman, A. L. Shelepin, “Fields on the Poincaré group: Arbitrary spin description and relativistic wave equations”, Internat. J. Theor. Phys., 40:3 (2001), 603–684 | DOI

[25] D. B. Kaplan, Chiral symmetry and lattice fermions, arXiv: 0912.2560

[26] S. De Vincenzo, “On the boundary conditions for the 1D Weyl–Majorana particle in a box”, Acta Phys. Pol. B, 51:11 (2020), 2055–2064 | DOI