Mots-clés : Dirac equation, equations for a Majorana particle
@article{TMF_2021_209_3_a5,
author = {S. De Vincenzo},
title = {Differential equations for {the~Majorana} particle in $3+1$ and $1+1$ dimensions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {475--501},
year = {2021},
volume = {209},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a5/}
}
S. De Vincenzo. Differential equations for the Majorana particle in $3+1$ and $1+1$ dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 475-501. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a5/
[1] E. Majorana, “Teoria simmetrica dell'elettrone e del positrone”, Il Nuovo Cimento, 14 (1937), 171–184 | DOI
[2] S. Esposito, “Searching for an equation: Dirac, Majorana and the others”, Ann. Phys., 327:6 (2012), 1617–1644 | DOI
[3] P. B. Pal, “Dirac, Majorana, and Weyl fermions”, Am. J. Phys., 79:5 (2011), 485–498 | DOI
[4] S. R. Elliott, M. Franz, “Colloquium: Majorana fermions in nuclear, particle, and solid-state physics”, Rev. Modern Phys., 87:1 (2015), 137–163 | DOI
[5] R. Aguado, “Majorana quasiparticles in condensed matter”, Rivista del Nuovo Cimento, 40:11 (2017), 523–593 | DOI
[6] S. De Vincenzo, C. Sánchez, “General boundary conditions for a Majorana single-particle in a box in $(1+1)$ dimensions”, Phys. Part. Nucl. Lett., 15:3 (2018), 257–268 | DOI
[7] R. Keil, C. Noh, A. Rai, S. Stutzer, S. Nolte, D. G. Angelakis, A. Szameit, “Optical simulation of charge conservation violation and Majorana dynamics”, Optica, 2:5 (2015), 454–459 | DOI
[8] K. M. Case, “Reformulation of the Majorana theory of the neutrino”, Phys. Rev., 107:1 (1957), 307–316 | DOI
[9] A. Aste, “A direct road to Majorana fields”, Symmetry, 2:4 (2010), 1776–1809 | DOI
[10] S. De Vincenzo, On wave equations for the Majorana particle in $(3+1)$ and $(1+1)$ dimensions, arXiv: 2007.03789
[11] A. Zee, Quantum Field Theory in a Nutshell, Princeton Univ. Press, Princeton, 2010
[12] J. J. Sakuray, Advanced Quantum Mechanics, Addison-Wesley, New York, 1967
[13] A. Messiah, Quantum Mechanics, v. II, North-Holland, Amsterdam, 1966
[14] W-H. Steeb, Problems in Theoretical Physics, v. II, BI-Wissenschaftsverlag, Mannhein, 1990; H. V. Henderson, F. Pukelsheim, S. R. Searle, “On the history of the Kronecker product”, Linear and Multilinear Algebra, 14:2 (1983), 113–120 | DOI
[15] M. H. Al-Hashimi, A. M. Shalaby, U.-J. Wiese, “Majorana fermions in a box”, Phys. Rev. D, 95:6 (2017), 065007, 14 pp. | DOI
[16] K. Johnson, “The M.I.T. bag model”, Acta Phys. Pol. B, 6:6 (1975), 865–892
[17] V. Alonso, S. De Vincenzo, L. Mondino, “On the boundary conditions for the Dirac equation”, Eur. J. Phys., 18:5 (1997), 315–320 | DOI
[18] W. Greiner, Relativistic Quantum Mechanics. Wave Equations, Springer, Berlin, 2000 | DOI
[19] S. De Vincenzo, “On real solutions of the Dirac equation for a one-dimensional Majorana particle”, Results Phys., 15 (2019), 102598, 8 pp. | DOI
[20] E. Marsch, “The two-component Majorana equation – Novel derivations and known symmetries”, J. Modern Phys., 2:10 (2011), 1109–1114 | DOI
[21] R. N. Mohapatra, P. B. Pal, Massive Neutrinos in Physics and Astrophysics, World Scientific Lecture Notes in Physics, 72, World Sci., Singapore, 2004 | DOI
[22] Y. F. Pérez, C. J. Quimbay, “Sistema relativista de dos niveles y oscilaciones de neutrinos de Majorana”, Revista Colombiana de Física, 44:2 (2012), 185–192
[23] C. Noh, B. M. Rodríguez-Lara, D. G. Angelakis, “Proposal for realization of the Majorana equation in a tabletop experiment”, Phys. Rev. A, 87:4 (2013), 040102, 5 pp. | DOI
[24] D. M. Gitman, A. L. Shelepin, “Fields on the Poincaré group: Arbitrary spin description and relativistic wave equations”, Internat. J. Theor. Phys., 40:3 (2001), 603–684 | DOI
[25] D. B. Kaplan, Chiral symmetry and lattice fermions, arXiv: 0912.2560
[26] S. De Vincenzo, “On the boundary conditions for the 1D Weyl–Majorana particle in a box”, Acta Phys. Pol. B, 51:11 (2020), 2055–2064 | DOI