Application of the $\bar\partial$-dressing method to a $(2+1)$-dimensional equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 465-474
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A remarkable method for investigating solutions of nonlinear soliton equation is the $\bar\partial$-dressing method. Although there are other methods that can also be used for that aim, the $\bar\partial$-dressing method is the most transparent and leads directly to the final results. The $(2+1)$-dimensional Sawada–Kotera equation is studied by analyzing the eigenfunction and the Green's function of its Lax representation as well as by the inverse spectral transformation, yielding a new $\bar\partial$ problem. The solution is constructed based on solving the $\bar\partial$-problem by choosing a proper spectral transformation. Furthermore, once the time evolution of the spectral data is determined, we are able to completely obtain a formal solution of the Sawada–Kotera equation.
Keywords: $\bar\partial$-dressing method, Green's function, eigenfunction
Mots-clés : Sawada–Kotera equation, inverse spectral transformation.
@article{TMF_2021_209_3_a4,
     author = {Xuedong Chai and Yufeng Zhang and Shiyin Zhao},
     title = {Application of the~$\bar\partial$-dressing method to a~$(2+1)$-dimensional equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {465--474},
     year = {2021},
     volume = {209},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a4/}
}
TY  - JOUR
AU  - Xuedong Chai
AU  - Yufeng Zhang
AU  - Shiyin Zhao
TI  - Application of the $\bar\partial$-dressing method to a $(2+1)$-dimensional equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 465
EP  - 474
VL  - 209
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a4/
LA  - ru
ID  - TMF_2021_209_3_a4
ER  - 
%0 Journal Article
%A Xuedong Chai
%A Yufeng Zhang
%A Shiyin Zhao
%T Application of the $\bar\partial$-dressing method to a $(2+1)$-dimensional equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 465-474
%V 209
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a4/
%G ru
%F TMF_2021_209_3_a4
Xuedong Chai; Yufeng Zhang; Shiyin Zhao. Application of the $\bar\partial$-dressing method to a $(2+1)$-dimensional equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 465-474. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a4/

[1] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR | Zbl

[2] R. Hirota, “A new form of Bäcklund transformations and its relation to the inverse scattering problem”, Progr. Theor. Phys., 52:5 (1974), 1498–1512 | DOI

[3] J. Weiss, M. Tabor, G. Carnevale, “The Painlevé property for partial differential equations”, J. Math. Phys., 24:3 (1983), 522–526 | DOI

[4] R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27:18 (1971), 1192–1994 | DOI

[5] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, eds. A. Nagai, J. Nimmo, C. Gilson, Cambridge Univ. Press, Cambridge, 2004 | MR

[6] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14:7 (1973), 805–809 | DOI

[7] R. Hirota, J. Satsuma, “Nonlinear evolution equations generated from the Bäcklund transformation for the Toda lattice”, Progr. Theor. Phys., 57:3 (1977), 797–807 | DOI

[8] C. Rogers, W. F. Shadwick, Bäklund Transformations and Their Applications, Mathematics in Science and Engineering, 161, Academic Press, New York, 1982 | MR | Zbl

[9] A. M. Bruckner, J. B. Bruckner, “Darboux transformations”, Trans. Amer. Math. Soc., 128:1 (1967), 103–111 | DOI | MR

[10] V. E. Zakharov, S. V. Manakov, “Postroenie mnogomernykh nelineinykh integriruemykh sistem i ikh reshenii”, Funkts. anal. i ego pril., 19:2 (1985), 11–25 | MR

[11] M. J. Ablowitz, D. Bar Jaacov, A. S. Fokas, “On the inverse scattering transform for the Kadomtsev–Petviashvili equation”, Stud. Appl. Math., 69:2 (1983), 135–143 | DOI

[12] V. G. Dubrovsky, “The application of the $\bar\partial$-dressing method to some integrable ($2+1$)-dimensional nonlinear equations”, J. Phys. A: Math. Gen., 29:13 (1996), 3617–3630 | DOI

[13] B. G. Konopelchenko, Introduction to Multidimensional Integrable Equations. The Inverse Spectral Transform in $2+1$ Dimensions, Springer Science, Business Media, New York, 2013 | DOI | MR | Zbl

[14] J. Zhu, X. Geng, “A hierarchy of coupled evolution equations with self-consistent sources and the dressing method”, J. Phys. A: Math. Theor., 46:3 (2012), 035204, 18 pp. | DOI

[15] P. A. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. Math., 137:2 (1993), 295–368 | DOI

[16] V. E. Zakharov, “Commutating operators and nonlocal $\bar\partial$-problem”, Plasma Theory and Nonlinear and Turbulent Processes in Physics (Kiev, USSR, 13–25 April, 1987), v. 1, eds. N. S. Erokhin, V. E. Zakharov, A. G. Sitenko, V. M. Chernousenko, V. G. Bar'yakhtar, Naukova Dumka, Kiev, 1988, 152–154 | Zbl

[17] B. G. Konopelchenko, Solitons in MultiDimensions. Inverse Spectral Transform, World Sci., Singapore, 1993 | DOI | MR | Zbl

[18] E. V. Doktorov, S. B. Leble, A Dressing Method in Mathematical Physics, Mathematical Physics Studies, 28, Springer, Dordrecht, 2007 | DOI | MR | Zbl

[19] A. S. Fokas, V. E. Zakharov, “The dressing method and nonlocal Riemann–Hilbert problems”, J. Nonlinear Sci., 2:1 (1992), 109–134 | DOI

[20] B. G. Konopelchenko, B. T. Matkarimov, “Inverse spectral transform for nonlinear evolution equation generating the Davey–Stewartson and Ishimory equations”, Stud. Appl. Math., 82:4 (1990), 319–359 | DOI

[21] V. Dubrovsky, A. Topovsky, “Multi-lump solutions of KP equation with integrable boundary via $\bar\partial$-dressing method”, Phys. D, 414 (2020), 132740, 11 pp. | DOI | MR

[22] J. Zhu, Y. Kuang, “CUSP solitons to the long-short waves equation and the $\bar\partial$-dressing method”, Rep. Math. Phys., 75:2 (2015), 199–211 | DOI

[23] Y. Kuang, J. Zhu, “The higher-order soliton solutions for the coupled Sasa–Satsuma system via the $\bar\partial$-dressing method”, Appl. Math. Lett., 66 (2017), 47–53 | DOI

[24] B. G. Konopelchenko, V. G. Dubrovsky, “Some new integrable nonlinear evolution equations in $2+1$ dimensions”, Phys. Lett. A, 102:1–2 (1984), 15–17 | DOI

[25] A. P. Fordy, J. Gibbons, “Factorization of operators I. Miura transformations”, J. Math. Phys., 21:10 (1980), 2508–2510 | DOI

[26] J. M. Dye, A. Parker, “On bidirectional fifth-order nonlinear evolution equations, Lax pairs, and directionally dependent solitary waves”, J. Math. Phys., 42:6 (2001), 2567–2589 | DOI