On modified $B$KP systems and generalizations
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 438-464 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find the form of the Orlov–Schulman operator of the modified $B$KP hierarchy, which played a pivotal role in the construction of additional symmetries for the modified $B$KP hierarchy. We investigate the tau functions of the modified $B$KP hierarchy and give many interesting properties, including Hirota bilinear identities and $($differential$)$ Fay identities. We also present the multicomponent modified $B$KP hierarchy and define a series of additional flows of the multicomponent modified $B$KP hierarchy that constitute an $N$-fold direct product of the positive half of the quantum torus symmetries. Finally, we introduce the noncommutative modified $B$KP hierarchy and derive its symmetries, as we do for the multicomponent modified $B$KP hierarchy.
Keywords: modified $B$KP hierarchy, Hirota bilinear identity, Fay identity, additional symmetries, multicomponent modified $B$KP hierarchy, noncommutative modified $B$KP hierarchy.
@article{TMF_2021_209_3_a3,
     author = {Zheng Wang and Chuanzhong Li},
     title = {On modified $B${KP} systems and generalizations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {438--464},
     year = {2021},
     volume = {209},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a3/}
}
TY  - JOUR
AU  - Zheng Wang
AU  - Chuanzhong Li
TI  - On modified $B$KP systems and generalizations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 438
EP  - 464
VL  - 209
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a3/
LA  - ru
ID  - TMF_2021_209_3_a3
ER  - 
%0 Journal Article
%A Zheng Wang
%A Chuanzhong Li
%T On modified $B$KP systems and generalizations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 438-464
%V 209
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a3/
%G ru
%F TMF_2021_209_3_a3
Zheng Wang; Chuanzhong Li. On modified $B$KP systems and generalizations. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 438-464. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a3/

[1] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[2] M. Kashiwara, T. Miwa, “The $\tau$ function of the Kadomtsev–Petviashvili equation. Transfromation groups for soliton equations. I”, Proc. Japan Acad. Ser. A., 57:7 (1981), 342–347 | DOI | Zbl

[3] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13–16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR

[4] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 12, World Sci., Singapore, 1991 | DOI | MR

[5] V. G. Kac, J. W. van de Leur, “The $n$-component KP hierarchy and representation theory”, Important Developments in Soliton Theory, eds. A. S. Fokas, V. E. Zakharov, Springer, Berlin, 1993, 302–343 | MR | Zbl

[6] J. Lee, “A square root of Hurwitz numbers”, Manuscripta Math., 162:1–2 (2020), 99–113, arXiv: 1807.03631 | DOI | MR

[7] A. Mironov, A. Morozov, S. Natanzon, “Cut-and-join structure and integrability for spin Hurwitz numbers”, Eur. Phys. J. C, 80:2 (2020), 97, 16 pp., arXiv: 1904.11458 | DOI

[8] J. Harnad, A. Yu. Orlov, “Bilinear expansions of lattices of KP $\tau$-functions in BKP $\tau$-functions: a fermionic approach”, J. Math. Phys., 62:1 (2021), 013508, 17 pp., arXiv: 2010.05055 | DOI | MR

[9] J. Harnad, A. Yu. Orlov, Bilinear expansions of Schur functions in Schur $Q$-functions: a fermionic approach, arXiv: 2008.13734

[10] A. Mironov, A. Morozov, “Superintegrability of Kontsevich matrix model”, Eur. Phys. J. C, 81:3 (2021), 270, 11 pp., arXiv: 2011.12917 | DOI

[11] X. Liu, C. Yang, Schur $Q$-polynomials and Kontsevich–Witten tau function, arXiv: 2103.14318

[12] Z. L. Wang, H. S. Li, “BKP hierarchy and Pfaffian point process”, Nucl. Phys. B, 939 (2019), 447–464, arXiv: 1807.02259 | DOI

[13] C. Z. Li, “Dispersionless and multicomponent BKP hierarchies with quantum torus symmetries”, J. Geom. Phys., 119 (2017), 103–111, arXiv: 1703.00101 | DOI

[14] A. Yu. Orlov, E. I. Schulman, “Additional symmetries of integrable equations and conformal algebra reprensentation”, Lett. Math. Phys., 12:3 (1986), 171–179 | DOI

[15] R. Dijkgraaf, E. Witten, “Mean field theory, topological field theory, and multimatrix models”, Nucl. Phys. B, 342:3 (1990), 486–522 | DOI

[16] M. Douglas, “Strings in less than one dimension and the generalized KdV hierarchie”, Phys. Lett. B, 238:2–4 (1990), 176–180 | DOI

[17] K. Kiso, “A remark on the commuting flows defined by Lax equations”, Prog. Theor. Phys., 83:6 (1990), 1108–1125 | DOI

[18] B. A. Kupershmidt, “Mathematics of dispersive water waves”, Commun. Math. Phys., 99:1 (1985), 51–73 | DOI | Zbl

[19] I. Ya. Dorfman, A. S. Fokas, “Hamiltonian theory over noncommutative rings and integrability in multidimensions”, J. Math. Phys., 33:7 (1992), 2504–2514 | DOI

[20] M. Hamanaka, K. Toda, “Towards noncommutative integrable systems”, Phys. Lett. A, 316:1–2 (2003), 77–83, arXiv: hep-th/0211148 | DOI

[21] M. Sakakibara, “Factorization methods for noncommutative KP and Toda hierarchy”, J. Phys. A: Math. Theor., 37:45 (2004), L599–L604, arXiv: nlin/0408002 | DOI

[22] M. Hamanaka, “Noncommutative integrable systems and quasideterminants”, AIP Conf. Proc., 1212:1 (2010), 122–135, arXiv: 1012.6043 | DOI

[23] M. R. Douglas, N. A. Nekrasov, “Noncommutative field theory”, Rev. Modern Phys., 73:4 (2002), 977–986, arXiv: hep-th/0106048 | DOI

[24] M. Adler, P. van Moerbeke, P. Vanhaecke, “Moment matrices and multi-component KP with applications to random matrix theory”, Commun. Math. Phys., 286:1 (2009), 1–38 | DOI

[25] R. Block, “On torsion-free abelian groups and Lie algebras”, Proc. Amer. Math. Soc., 9 (1958), 613–620 | DOI | MR | Zbl

[26] J. M. Osborn, K. Zhao, “Infinite-dimensional Lie algebras of generalized Block type”, Proc. Amer. Math. Soc., 127 (1999), 1641–1650 | DOI | MR

[27] X. Xu, “Generalizations of Block algebras”, Manuscripta Math., 100 (1999), 489–518 | DOI

[28] Y. Su, “Quasifinite representations of a Lie algebra of Block type”, J. Algebra, 276:1 (2004), 117–128 | DOI

[29] C. Z. Li, “Symmetries and Reductions on the noncommutative Kadomtsev–Petviashvili and Gelfand–Dickey hierarchies”, J. Math. Phys., 59:12 (2018), 123503, 12 pp., arXiv: 1907.04169 | DOI

[30] A. Yu. Orlov, “Vertex operator, $\overline\partial$-problem, symmetries, variational identities and Hamiltonian formalism for $2+1$ integrable systems”, Plasma Theory and Nonlinear and Turbulent Processes in Physics (Kiev, USSR, 13–25 April, 1987), v. 1, eds. V. G. Baryakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, V. E. Zakharov, World Sci., Singapore, 1988, 116–134 | MR | Zbl

[31] Chuan-Chzhun Li, “Mnogokomponentnaya ierarkhiya Volterra drobnogo poryadka i ee subierarkhiya s simmetriei Virasoro”, TMF, 207:1 (2021), 3–22 | DOI | DOI

[32] Chuan-Chzhun Li, “Konechnomernye tau-funktsii ierarkhii universalnykh kharakterov”, TMF, 206:3 (2021), 368–383 | DOI | DOI | MR

[33] C. Z. Li, “Two-component symplectic universal characters and integrable hierarchies”, Internat. J. Math., 32:7 (2021), 2150045, 15 pp. | DOI | MR | Zbl

[34] J. P. Cheng, “The BKP hierarchy and the modified BKP hierarchy”, submitted

[35] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR

[36] K. L. Tian, J. S. He, J. P. Cheng, Y. Cheng, “Additional symmetries of constrained CKP and BKP hierarchies”, Sci. China Math., 54:2 (2011), 257–268 | DOI