@article{TMF_2021_209_3_a3,
author = {Zheng Wang and Chuanzhong Li},
title = {On modified $B${KP} systems and generalizations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {438--464},
year = {2021},
volume = {209},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a3/}
}
Zheng Wang; Chuanzhong Li. On modified $B$KP systems and generalizations. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 438-464. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a3/
[1] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl
[2] M. Kashiwara, T. Miwa, “The $\tau$ function of the Kadomtsev–Petviashvili equation. Transfromation groups for soliton equations. I”, Proc. Japan Acad. Ser. A., 57:7 (1981), 342–347 | DOI | Zbl
[3] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13–16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR
[4] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 12, World Sci., Singapore, 1991 | DOI | MR
[5] V. G. Kac, J. W. van de Leur, “The $n$-component KP hierarchy and representation theory”, Important Developments in Soliton Theory, eds. A. S. Fokas, V. E. Zakharov, Springer, Berlin, 1993, 302–343 | MR | Zbl
[6] J. Lee, “A square root of Hurwitz numbers”, Manuscripta Math., 162:1–2 (2020), 99–113, arXiv: 1807.03631 | DOI | MR
[7] A. Mironov, A. Morozov, S. Natanzon, “Cut-and-join structure and integrability for spin Hurwitz numbers”, Eur. Phys. J. C, 80:2 (2020), 97, 16 pp., arXiv: 1904.11458 | DOI
[8] J. Harnad, A. Yu. Orlov, “Bilinear expansions of lattices of KP $\tau$-functions in BKP $\tau$-functions: a fermionic approach”, J. Math. Phys., 62:1 (2021), 013508, 17 pp., arXiv: 2010.05055 | DOI | MR
[9] J. Harnad, A. Yu. Orlov, Bilinear expansions of Schur functions in Schur $Q$-functions: a fermionic approach, arXiv: 2008.13734
[10] A. Mironov, A. Morozov, “Superintegrability of Kontsevich matrix model”, Eur. Phys. J. C, 81:3 (2021), 270, 11 pp., arXiv: 2011.12917 | DOI
[11] X. Liu, C. Yang, Schur $Q$-polynomials and Kontsevich–Witten tau function, arXiv: 2103.14318
[12] Z. L. Wang, H. S. Li, “BKP hierarchy and Pfaffian point process”, Nucl. Phys. B, 939 (2019), 447–464, arXiv: 1807.02259 | DOI
[13] C. Z. Li, “Dispersionless and multicomponent BKP hierarchies with quantum torus symmetries”, J. Geom. Phys., 119 (2017), 103–111, arXiv: 1703.00101 | DOI
[14] A. Yu. Orlov, E. I. Schulman, “Additional symmetries of integrable equations and conformal algebra reprensentation”, Lett. Math. Phys., 12:3 (1986), 171–179 | DOI
[15] R. Dijkgraaf, E. Witten, “Mean field theory, topological field theory, and multimatrix models”, Nucl. Phys. B, 342:3 (1990), 486–522 | DOI
[16] M. Douglas, “Strings in less than one dimension and the generalized KdV hierarchie”, Phys. Lett. B, 238:2–4 (1990), 176–180 | DOI
[17] K. Kiso, “A remark on the commuting flows defined by Lax equations”, Prog. Theor. Phys., 83:6 (1990), 1108–1125 | DOI
[18] B. A. Kupershmidt, “Mathematics of dispersive water waves”, Commun. Math. Phys., 99:1 (1985), 51–73 | DOI | Zbl
[19] I. Ya. Dorfman, A. S. Fokas, “Hamiltonian theory over noncommutative rings and integrability in multidimensions”, J. Math. Phys., 33:7 (1992), 2504–2514 | DOI
[20] M. Hamanaka, K. Toda, “Towards noncommutative integrable systems”, Phys. Lett. A, 316:1–2 (2003), 77–83, arXiv: hep-th/0211148 | DOI
[21] M. Sakakibara, “Factorization methods for noncommutative KP and Toda hierarchy”, J. Phys. A: Math. Theor., 37:45 (2004), L599–L604, arXiv: nlin/0408002 | DOI
[22] M. Hamanaka, “Noncommutative integrable systems and quasideterminants”, AIP Conf. Proc., 1212:1 (2010), 122–135, arXiv: 1012.6043 | DOI
[23] M. R. Douglas, N. A. Nekrasov, “Noncommutative field theory”, Rev. Modern Phys., 73:4 (2002), 977–986, arXiv: hep-th/0106048 | DOI
[24] M. Adler, P. van Moerbeke, P. Vanhaecke, “Moment matrices and multi-component KP with applications to random matrix theory”, Commun. Math. Phys., 286:1 (2009), 1–38 | DOI
[25] R. Block, “On torsion-free abelian groups and Lie algebras”, Proc. Amer. Math. Soc., 9 (1958), 613–620 | DOI | MR | Zbl
[26] J. M. Osborn, K. Zhao, “Infinite-dimensional Lie algebras of generalized Block type”, Proc. Amer. Math. Soc., 127 (1999), 1641–1650 | DOI | MR
[27] X. Xu, “Generalizations of Block algebras”, Manuscripta Math., 100 (1999), 489–518 | DOI
[28] Y. Su, “Quasifinite representations of a Lie algebra of Block type”, J. Algebra, 276:1 (2004), 117–128 | DOI
[29] C. Z. Li, “Symmetries and Reductions on the noncommutative Kadomtsev–Petviashvili and Gelfand–Dickey hierarchies”, J. Math. Phys., 59:12 (2018), 123503, 12 pp., arXiv: 1907.04169 | DOI
[30] A. Yu. Orlov, “Vertex operator, $\overline\partial$-problem, symmetries, variational identities and Hamiltonian formalism for $2+1$ integrable systems”, Plasma Theory and Nonlinear and Turbulent Processes in Physics (Kiev, USSR, 13–25 April, 1987), v. 1, eds. V. G. Baryakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, V. E. Zakharov, World Sci., Singapore, 1988, 116–134 | MR | Zbl
[31] Chuan-Chzhun Li, “Mnogokomponentnaya ierarkhiya Volterra drobnogo poryadka i ee subierarkhiya s simmetriei Virasoro”, TMF, 207:1 (2021), 3–22 | DOI | DOI
[32] Chuan-Chzhun Li, “Konechnomernye tau-funktsii ierarkhii universalnykh kharakterov”, TMF, 206:3 (2021), 368–383 | DOI | DOI | MR
[33] C. Z. Li, “Two-component symplectic universal characters and integrable hierarchies”, Internat. J. Math., 32:7 (2021), 2150045, 15 pp. | DOI | MR | Zbl
[34] J. P. Cheng, “The BKP hierarchy and the modified BKP hierarchy”, submitted
[35] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR
[36] K. L. Tian, J. S. He, J. P. Cheng, Y. Cheng, “Additional symmetries of constrained CKP and BKP hierarchies”, Sci. China Math., 54:2 (2011), 257–268 | DOI