On modified $B$KP systems and generalizations
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 438-464
Voir la notice de l'article provenant de la source Math-Net.Ru
We find the form of the Orlov–Schulman operator of the modified $B$KP hierarchy, which played a pivotal role in the construction of additional symmetries for the modified $B$KP hierarchy. We investigate the tau functions of the modified $B$KP hierarchy and give many interesting properties, including Hirota bilinear identities and $($differential$)$ Fay identities. We also present the multicomponent modified $B$KP hierarchy and define a series of additional flows of the multicomponent modified $B$KP hierarchy that constitute an $N$-fold direct product of the positive half of the quantum torus symmetries. Finally, we introduce the noncommutative modified $B$KP hierarchy and derive its symmetries, as we do for the multicomponent modified $B$KP hierarchy.
Keywords:
modified $B$KP hierarchy, Hirota bilinear identity, Fay identity, additional symmetries, multicomponent modified $B$KP hierarchy, noncommutative modified $B$KP hierarchy.
@article{TMF_2021_209_3_a3,
author = {Zheng Wang and Chuanzhong Li},
title = {On modified $B${KP} systems and generalizations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {438--464},
publisher = {mathdoc},
volume = {209},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a3/}
}
Zheng Wang; Chuanzhong Li. On modified $B$KP systems and generalizations. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 438-464. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a3/