Nonlinear evolutionary Schr\"odinger equation in the~supercritical case
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 427-437
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for some initial data, solutions of the Cauchy problem for the nonlinear Schrödinger equation in the supercritical case are destroyed after a finite time, the exact value of which can be estimated from above. Lower bounds are obtained for the rate of destruction of the solution in some norms. A set of initial data is identified for which the solution of the Cauchy problem for the nonlinear Schrödinger equation in the supercritical case exists globally.
Keywords:
nonlinear evolutionary Schrödinger equation, Cauchy problem, solution blow-up, blow-up rate, interpolation inequality, global solvability.
@article{TMF_2021_209_3_a2,
author = {Sh. M. Nasibov},
title = {Nonlinear evolutionary {Schr\"odinger} equation in the~supercritical case},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {427--437},
publisher = {mathdoc},
volume = {209},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a2/}
}
Sh. M. Nasibov. Nonlinear evolutionary Schr\"odinger equation in the~supercritical case. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 427-437. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a2/