Nonlinear evolutionary Schrödinger equation in the supercritical case
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 427-437 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that for some initial data, solutions of the Cauchy problem for the nonlinear Schrödinger equation in the supercritical case are destroyed after a finite time, the exact value of which can be estimated from above. Lower bounds are obtained for the rate of destruction of the solution in some norms. A set of initial data is identified for which the solution of the Cauchy problem for the nonlinear Schrödinger equation in the supercritical case exists globally.
Keywords: nonlinear evolutionary Schrödinger equation, Cauchy problem, solution blow-up, blow-up rate, interpolation inequality, global solvability.
@article{TMF_2021_209_3_a2,
     author = {Sh. M. Nasibov},
     title = {Nonlinear evolutionary {Schr\"odinger} equation in the~supercritical case},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {427--437},
     year = {2021},
     volume = {209},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a2/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - Nonlinear evolutionary Schrödinger equation in the supercritical case
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 427
EP  - 437
VL  - 209
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a2/
LA  - ru
ID  - TMF_2021_209_3_a2
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T Nonlinear evolutionary Schrödinger equation in the supercritical case
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 427-437
%V 209
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a2/
%G ru
%F TMF_2021_209_3_a2
Sh. M. Nasibov. Nonlinear evolutionary Schrödinger equation in the supercritical case. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 427-437. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a2/

[1] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134

[2] V. N. Lugovoi, A. M. Prokhorov, “Teoriya rasprostraneniya moschnogo lazernogo izucheniya v lineinoi srede”, UFN, 11:10 (1973), 203–247 | DOI | DOI

[3] J. J. Rasmussen, K. Rypdal, “Blow-up in nonlinear Schrodinger equations-I. A general review”, Phys. Scr., 33:6 (1986), 481–497 ; “Blow-up in nonlinear Schrodinger equations-II. Similarity structure of the blow-up singularity”, 498–504 | DOI | MR | MR

[4] Sh. M. Nasibov, “Ob ustoichivosti, razrushenii, zatukhanii i samokanalizatsii reshenii odnogo nelineinogo uravneniya Shredingera”, Dokl. AN SSSR, 285:4 (1985), 807–811 | MR | Zbl

[5] Sh. M. Nasibov, “Ob optimalnykh konstantakh v nekotorykh neravenstvakh Soboleva i ikh prilozhenii k nelineinomu uravneniyu Shredingera”, Dokl. AN SSSR, 307:3 (1989), 538–542 | MR | Zbl

[6] A. B. Shabat, “O zadache Koshi dlya uravneniya Ginzburga–Landau”, Dinamika sploshnoi sredy, Vyp. 1, Izd-vo In-ta gidrodinamiki SO RAN, Novosibirsk, 1969, 180–194

[7] A. V. Zhiber, A. B. Shabat, “O zadache Koshi dlya nelineinogo uravneniya Shredingera”, Differents. uravneniya, 6:1 (1970), 137–146 | MR | Zbl

[8] V. Zh. Sakbaev, “Gradientnyi vzryv reshenii zadachi Koshi dlya uravneniya Shredingera”, Tr. MIAN, 283 (2013), 171–187 | DOI | DOI | MR

[9] S. Momani, O. A. Argub, B. Maayah, F. Yousef, A. Alsaedi, “A reliable algorithm for solving linear and nonlinear Schrödinger equations”, Appl. Comput. Math., 17:2 (2018), 151–160 | MR

[10] Sh. M. Nasibov, “Ob odnom nelineinom uravnenii Shredingera s dissipativnym chlenom”, Dokl. AN SSSR, 304:2 (1989), 285–289 | MR | Zbl

[11] Sh. M. Nasibov, “Ob otsutstvii globalnykh reshenii smeshannoi zadachi dlya nelineinogo evolyutsionnogo uravneniya tipa Shredingera”, TMF, 195:2 (2018), 190–196 | DOI | DOI | MR

[12] Sh. M. Nasibov, “Nelineinoe evolyutsionnoe uravnenie Shredingera v dvumernoi oblasti”, TMF, 201:1 (2019), 118–125 | DOI | DOI | MR

[13] Sh. M. Nasibov, “Ob odnom nelineinom uravnenii tipa Shrëdingera”, Differents. uravneniya, 164:4 (1980), 660–670 | MR | Zbl

[14] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[15] M. V. Vladimirov, “Razreshimost smeshannoi zadachi dlya nelineinogo uravneniya Shrëdingera”, Matem. sb., 130(172):4(8) (1986), 520–536 | DOI | MR | Zbl

[16] O. I. Kudryashov, “Ob osobennostyakh reshenii nelineinykh uravnenii tipa Ginzburga–\allowbreakLandau”, Sib. matem. zhurnal, 16:4 (1975), 866–868 | DOI | MR | Zbl

[17] R. T. Classey, “On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations”, J. Math. Phys., 18:9 (1977), 1794–1797 | DOI | MR

[18] P. E. Zhidkov, Korteveg–de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Mathematics, 1756, Springer, Berlin, 2001 | MR

[19] T. H. Gazenave, F. B. Weissler, “The structure of solutions to the pseudo-conformally invariant nonlinear Schrödinger equation”, Proc. Roy. Soc. Edinburgh Sect. A, 117:3–4 (1991), 251–273 | DOI | MR

[20] H. Nawa, “Asymptotic and limiting profiles of blow up solutions of the nonlinear Schrödinger equation with critical power”, Comm. Pure Appl. Math., 52:2 (1999), 193–270 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[21] C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Appl. Math. Sci., 139, Springer, New York, 1999 | MR

[22] J. Ginibre, G. Velo, “On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case”, J. Funct. Anal., 32:1 (1979), 1–32 | DOI | MR

[23] J. Ginibre, G. Velo, “On a class of nonlinear Schrödinger equations. III. Special theories in dimensions $1,2$ and $3$”, Ann. Inst. H. Poincaré Sect. A (N. S.), 28:3 (1978), 287–316 | MR

[24] S. N. Vlasov, V. A. Petrischev, I. I. Talanov, “Usrednennoe opisanie volnovykh puchkov v lineinykh i nelineinykh sredakh (metod momentov)”, Izv. vuzov. Radiofizika, 14:9 (1971), 1353–1368 | DOI

[25] V. E. Zakharov, “Kollaps lengmyurovskikh voln”, ZhETF, 62:5 (1972), 1745–1759

[26] Sh. M. Nasibov, “Nekotorye zamechaniya o nekotorykh fundamentalnykh neravenstvakh Grossa–Soboleva, Khirshmana, Pauli–Geizenberga–Veilya i neravenstve entropii”, Dokl. RAN, 415:5 (2007), 589–591 | DOI

[27] Sh. M. Nasibov, “O kollapse reshenii zadachi Koshi dlya odnogo nelineinogo uravneniya Shrëdingera”, Dokl. RAN, 483:3 (2018), 254–256 | DOI | DOI

[28] M. K. Kwong, “Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbb{R}^n$”, Arch. Ration. Mech. Anal., 105:3 (1989), 243–266 | DOI | MR

[29] Sh. M. Nasibov, E. J. M. Veling, “Upper and lower bounds for the optimal constant in the extended Sobolev inequality. Derivation and numerical results”, J. Math. Inequal., 13:3 (2019), 753–778 | DOI | MR

[30] Sh. M. Nasibov, “O skorosti razrusheniya reshenii zadachi Koshi dlya nelineinogo uravneniya Shredingera”, TMF, 203:3 (2020), 342–350 | DOI | DOI | MR