Homothetic vector fields of LRS Bianchi type-I spacetimes via the RIF tree approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 414-426 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We adopt a new approach to the study of homothetic vector fields of locally rotationally symmetric Bianchi type-I spacetimes. The obtained results are compared with the results of the direct integration technique and it is observed that the reduced involutive form (RIF) tree approach produces some new physically realistic metrics admitting proper homothetic vector fields, which were not given by the direct integration technique. The physical implications of the obtained metrics are also discussed by computing their energy–momentum tensors and connecting the parameters involved in the metrics with different energy conditions.
Keywords: homothetic symmetries, LRS Bianchi type-I spacetime, energy condition.
@article{TMF_2021_209_3_a1,
     author = {U. Nasib and T. Hussain and A. H. Bokhari},
     title = {Homothetic vector fields of {LRS} {Bianchi} {type-I} spacetimes via {the~RIF} tree approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {414--426},
     year = {2021},
     volume = {209},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a1/}
}
TY  - JOUR
AU  - U. Nasib
AU  - T. Hussain
AU  - A. H. Bokhari
TI  - Homothetic vector fields of LRS Bianchi type-I spacetimes via the RIF tree approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 414
EP  - 426
VL  - 209
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a1/
LA  - ru
ID  - TMF_2021_209_3_a1
ER  - 
%0 Journal Article
%A U. Nasib
%A T. Hussain
%A A. H. Bokhari
%T Homothetic vector fields of LRS Bianchi type-I spacetimes via the RIF tree approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 414-426
%V 209
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a1/
%G ru
%F TMF_2021_209_3_a1
U. Nasib; T. Hussain; A. H. Bokhari. Homothetic vector fields of LRS Bianchi type-I spacetimes via the RIF tree approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 414-426. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a1/

[1] A. H. Taub, “Empty space-times admitting a three parameter group of moting”, Ann. Math., 53:2 (1951), 472–490 | DOI

[2] C. W. Misner, “Mixmaster universe”, Phys. Rev. Lett., 22:20 (1969), 1071–1074 | DOI

[3] G. F. R. Ellis, M. A. H. MacCallum, “A class of homogeneous cosmological models”, Commun. Math. Phys., 12:2 (1969), 108–141 | DOI

[4] J. Wainwright, G. F. R. Ellis (eds.), Dynamical Systems in Cosmology, Cambridge Univ. Press, Cambridge, 1997 | DOI | MR | Zbl

[5] G. S. Hall, Symmetries and Curvature Structure in General Relativity, World Scientific Lecture Notes in Physics, 47, World Sci., Singapore, 2004 | DOI | MR | Zbl

[6] D. Kramer, X. Shtefann, M. Mak-Kallum, E. Kherlt, Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | DOI | MR | MR | Zbl

[7] B. J. Carr, A. A. Coley, “Self-similarity in general relativity”, Class. Quantum Grav., 16:7 (1999), R31–R71 | DOI

[8] R. Maartens, S. D. Maharaj, “Conformal symmetries of $pp$-waves”, Class. Quantum Grav., 8:3 (1991), 503–514 | DOI

[9] S. Moopanar, S. D. Maharaj, “Relativistic shear-free fluids with symmetry”, J. Eng. Math., 82:1 (2013), 125–131 | DOI | MR

[10] K. Saifullah, Shair-E-Yazdan, “Conformal motions in plane symmetric static space-times”, Internat. J. Modern Phys. D, 18:1 (2009), 71–81, arXiv: 0902.3813 | DOI

[11] R. Maartens, S. D. Maharaj, B. O. J. Tupper, “General solution and classification of conformal motions in static spherical spacetimes”, Class. Quantum Grav., 12:10 (1995), 2577–2586 | DOI

[12] S. Moopanar, S. D. Maharaj, “Conformal symmetries of spherical spacetimes”, Internat. J. Theor. Phys., 49:8 (2010), 1878–1885 | DOI

[13] S. Khan, T. Hussain, A. H. Bokhari, G. A. Khan, “Conformal Killing vectors in LRS Bianchi type V spacetimes”, Commun. Theor. Phys., 65:3 (2016), 315–320 | DOI

[14] S. Khan, T. Hussain, A. H. Bokhari, G. A. Khan, “Conformal Killing vectors of plane symmetric four dimensional lorentzian manifolds”, Eur. Phys. J. C, 75 (2015), 523, 9 pp., arXiv: 1510.06776 | DOI

[15] T. Khussein, S. Kkhan, A. Kh. Bokkhari, G. A. Kkhan, “Sobstvennye konformnye vektory Killinga v staticheskom ploskom simmetricheskom prostranstve-vremeni”, TMF, 191:1 (2017), 172–182 | DOI | DOI | MR

[16] T. Hussain, M. Farhan, “Proper conformal Killing vectors in Kantowski–Sachs metric”, Commun. Theor. Phys., 69:4 (2018), 393–398 | DOI

[17] M. A. H. MacCallum, “Computer algebra in gravity research”, Liv. Rev. Relat., 21:1 (2018), 6, 93 pp. | DOI

[18] G. J. Reid, A. D. Wittkope, A. Boulton, “Reduction of systems of nonlinear partial differential equations to simplified involutive forms”, Euro. J. Appl. Math., 7:6 (1995), 635–666 | DOI

[19] T. Hussain, U. Nasib, M. Farhan, A. H. Bokhari, “A study of energy conditions in Kantowski–Sachs spacetimes via homothetic vector fields”, Internat. J. Geom. Methods Modern Phys., 17:3 (2020), 2050035 | DOI

[20] G. Shabbir, K. B. Amur, “Proper homothetic vector fields in Bianchi type-I space-time”, Appl. Sci., 8:1 (2006), 153–157 | MR