@article{TMF_2021_209_3_a1,
author = {U. Nasib and T. Hussain and A. H. Bokhari},
title = {Homothetic vector fields of {LRS} {Bianchi} {type-I} spacetimes via {the~RIF} tree approach},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {414--426},
year = {2021},
volume = {209},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a1/}
}
TY - JOUR AU - U. Nasib AU - T. Hussain AU - A. H. Bokhari TI - Homothetic vector fields of LRS Bianchi type-I spacetimes via the RIF tree approach JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 414 EP - 426 VL - 209 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a1/ LA - ru ID - TMF_2021_209_3_a1 ER -
%0 Journal Article %A U. Nasib %A T. Hussain %A A. H. Bokhari %T Homothetic vector fields of LRS Bianchi type-I spacetimes via the RIF tree approach %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 414-426 %V 209 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a1/ %G ru %F TMF_2021_209_3_a1
U. Nasib; T. Hussain; A. H. Bokhari. Homothetic vector fields of LRS Bianchi type-I spacetimes via the RIF tree approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 414-426. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a1/
[1] A. H. Taub, “Empty space-times admitting a three parameter group of moting”, Ann. Math., 53:2 (1951), 472–490 | DOI
[2] C. W. Misner, “Mixmaster universe”, Phys. Rev. Lett., 22:20 (1969), 1071–1074 | DOI
[3] G. F. R. Ellis, M. A. H. MacCallum, “A class of homogeneous cosmological models”, Commun. Math. Phys., 12:2 (1969), 108–141 | DOI
[4] J. Wainwright, G. F. R. Ellis (eds.), Dynamical Systems in Cosmology, Cambridge Univ. Press, Cambridge, 1997 | DOI | MR | Zbl
[5] G. S. Hall, Symmetries and Curvature Structure in General Relativity, World Scientific Lecture Notes in Physics, 47, World Sci., Singapore, 2004 | DOI | MR | Zbl
[6] D. Kramer, X. Shtefann, M. Mak-Kallum, E. Kherlt, Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | DOI | MR | MR | Zbl
[7] B. J. Carr, A. A. Coley, “Self-similarity in general relativity”, Class. Quantum Grav., 16:7 (1999), R31–R71 | DOI
[8] R. Maartens, S. D. Maharaj, “Conformal symmetries of $pp$-waves”, Class. Quantum Grav., 8:3 (1991), 503–514 | DOI
[9] S. Moopanar, S. D. Maharaj, “Relativistic shear-free fluids with symmetry”, J. Eng. Math., 82:1 (2013), 125–131 | DOI | MR
[10] K. Saifullah, Shair-E-Yazdan, “Conformal motions in plane symmetric static space-times”, Internat. J. Modern Phys. D, 18:1 (2009), 71–81, arXiv: 0902.3813 | DOI
[11] R. Maartens, S. D. Maharaj, B. O. J. Tupper, “General solution and classification of conformal motions in static spherical spacetimes”, Class. Quantum Grav., 12:10 (1995), 2577–2586 | DOI
[12] S. Moopanar, S. D. Maharaj, “Conformal symmetries of spherical spacetimes”, Internat. J. Theor. Phys., 49:8 (2010), 1878–1885 | DOI
[13] S. Khan, T. Hussain, A. H. Bokhari, G. A. Khan, “Conformal Killing vectors in LRS Bianchi type V spacetimes”, Commun. Theor. Phys., 65:3 (2016), 315–320 | DOI
[14] S. Khan, T. Hussain, A. H. Bokhari, G. A. Khan, “Conformal Killing vectors of plane symmetric four dimensional lorentzian manifolds”, Eur. Phys. J. C, 75 (2015), 523, 9 pp., arXiv: 1510.06776 | DOI
[15] T. Khussein, S. Kkhan, A. Kh. Bokkhari, G. A. Kkhan, “Sobstvennye konformnye vektory Killinga v staticheskom ploskom simmetricheskom prostranstve-vremeni”, TMF, 191:1 (2017), 172–182 | DOI | DOI | MR
[16] T. Hussain, M. Farhan, “Proper conformal Killing vectors in Kantowski–Sachs metric”, Commun. Theor. Phys., 69:4 (2018), 393–398 | DOI
[17] M. A. H. MacCallum, “Computer algebra in gravity research”, Liv. Rev. Relat., 21:1 (2018), 6, 93 pp. | DOI
[18] G. J. Reid, A. D. Wittkope, A. Boulton, “Reduction of systems of nonlinear partial differential equations to simplified involutive forms”, Euro. J. Appl. Math., 7:6 (1995), 635–666 | DOI
[19] T. Hussain, U. Nasib, M. Farhan, A. H. Bokhari, “A study of energy conditions in Kantowski–Sachs spacetimes via homothetic vector fields”, Internat. J. Geom. Methods Modern Phys., 17:3 (2020), 2050035 | DOI
[20] G. Shabbir, K. B. Amur, “Proper homothetic vector fields in Bianchi type-I space-time”, Appl. Sci., 8:1 (2006), 153–157 | MR