Mots-clés : evolution
@article{TMF_2021_209_3_a0,
author = {V. V. Zharinov},
title = {Navier{\textendash}Stokes equations, the~algebraic aspect},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {397--413},
year = {2021},
volume = {209},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a0/}
}
V. V. Zharinov. Navier–Stokes equations, the algebraic aspect. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 3, pp. 397-413. http://geodesic.mathdoc.fr/item/TMF_2021_209_3_a0/
[1] E. E. Sedov, Mekhanika sploshnoi sredy, Nauka, M., 1970 | MR | Zbl
[2] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 6, Gidrodinamika, 2001 | MR
[3] T.-P. Tsai, Lectures on Navier–Stokes Equations, Graduate Studies in Mathematics, 192, AMS, Providence, RI, 2018 | DOI | MR
[4] P. G. Lemarié-Rieusset, The Navier–Stokes Problem in the 21st Century, Chapman and Hall/CRC, Boca Raton, FL, 2016 | DOI
[5] M. V. Korobkov, K. Piletskas, V. V. Pukhnachev, R. Russo, “Zadacha protekaniya dlya uravnenii Nave–Stoksa”, UMN, 69:6(420) (2014), 115–176 | DOI | DOI | MR | Zbl
[6] C. L. Fefferman, J. C. Robinson, J. L. Rodrigo (eds.), Partial Differential Equations in Fluid Mechanics, London Mathematical Society Lecture Note Series, 452, Cambridge Univ. Press, Cambridge, 2018 | DOI
[7] W. M. Seiler, Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra, Algorithms and Computation in Mathematics, 24, Springer, Berlin–Heidelberg, 2010 | DOI
[8] P. Olver, Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | DOI | MR | Zbl
[9] S. Maklein, Gomologiya, Mir, M., 1966 | DOI | MR | Zbl
[10] V. V. Zharinov, “Zakony sokhraneniya evolyutsionnykh sistem”, TMF, 68:2 (1986), 163–171 | DOI | MR | Zbl
[11] V. V. Zharinov, “Zakony sokhraneniya, differentsialnye tozhdestva i svyazi uravnenii v chastnykh proizvodnykh”, TMF, 185:2 (2015), 227–251 | DOI | DOI | MR