Mots-clés : plasma oscillations
@article{TMF_2021_209_2_a9,
author = {B. Khosropour},
title = {Plasma oscillations in a~generalized {Snyder} space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {378--388},
year = {2021},
volume = {209},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a9/}
}
B. Khosropour. Plasma oscillations in a generalized Snyder space. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 378-388. http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a9/
[1] H. S. Snyder, “Quantized space-time”, Phys. Rev., 71:1 (1947), 38–41 | DOI | MR
[2] G. Amelino-Camelia, F. Giacomini, G. Gubitosi, “Thermal and spectral dimension of (generalized) Snyder noncommutative spacetimes”, Phys. Lett. B, 784 (2018), 50–55, arXiv: 1805.09363 | DOI
[3] Kh. P. Gnatenko, V. M. Tkachuk, “Macroscopic body in the Snyder space and minimal length estimation”, Europhys. Lett., 125:5 (2019), 50003, 5 pp., arXiv: 1901.10811 | DOI
[4] N. Seiberg, E. Witten, “String theory and noncommutative geometry”, JHEP, 09 (1999), 032, 93 pp. | DOI | MR
[5] S. Mignemi, “Classical and quantum mechanics of the nonrelativistic Snyder model”, Phys. Rev. D, 84:2 (2011), 025021, 11 pp., arXiv: 1104.0490 | DOI
[6] K. Fredenhagen, F. Reszewski, “Polymer state approximation of Schrödinger wavefunctions”, Class. Quantum Grav., 23:22 (2006), 6577–6584, arXiv: gr-qc/0606090 | DOI | MR
[7] M. V. Battisti, S. Meljanac, “Scalar field theory on noncommutative Snyder spacetime”, Phys. Rev. D, 82:2 (2010), 024028, 9 pp., arXiv: 1003.2108 | DOI | MR
[8] F. Girelli, E. R. Livine, “Scalar field theory in Snyder space-time: alternatives”, JHEP, 03 (2011), 132, 31 pp. | DOI | MR
[9] G. Jaroszkiewicz, “A dynamical model for the origin of Snyder's quantized spacetime algebra”, J. Phys. A: Math. Gen., 28:12 (1995), L343–L348 | DOI | MR
[10] R. Banerjee, S. Kulkarni, S. Samanta, “Deformed symmetry in Snyder space and relativistic particle dynamics”, JHEP, 05 (2006), 077, 22 pp. | DOI
[11] L. J. Garay, “Quantum gravity and minimum length”, Internat. J. Modern Phys. A, 10:2 (1995), 145–166, arXiv: gr-qc/9403008 | DOI
[12] L. Lu, A. Stern, “Particle dynamics on Snyder space”, Nucl. Phys. B, 860:1 (2012), 186–205, arXiv: 1110.4112 | DOI | MR
[13] S. Mignemi, “Classical and quantum mechanics of the nonrelativistic Snyder model in curved space”, Class. Quantum Grav., 29:21 (2012), 215019, 19 pp. | DOI | MR
[14] C. Leiva, “Harmonic oscillator in Snyder space: the classical case and the quantum case”, Pramana J. Phys., 74:2 (2010), 169–175, arXiv: 0809.0066 | DOI
[15] L. Tonks, I. Langmuir, “Oscillations in ionized gases”, Phys. Rev., 33:2 (1929), 195–210 | DOI
[16] A. Kempf, “Non-pointlike particles in harmonic oscillators”, J. Phys. A: Math. Gen., 30:6 (1997), 2093–2101, arXiv: hep-th/9604045 | DOI | MR
[17] A. Kempf, G. Mangano, R. B. Mann, “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52:2 (1995), 1108–1118, arXiv: hep-th/9412167 | DOI | MR
[18] A. Kempf, G. Mangano, “Minimal length uncertainty relation and ultraviolet regularization”, Phys. Rev. D, 55:12 (1997), 7909–7920, arXiv: hep-th/9612084 | DOI
[19] M. M. Stetsko, V. M. Tkachuk, “Perturbation hydrogen-atom spectrum in deformed space with minimal length”, Phys. Rev. A, 74:1 (2006), 012101, 5 pp., arXiv: quant-ph/0603042 | DOI
[20] F. Brau, “Minimal length uncertainty relation and the hydrogen atom”, J. Phys. A: Math. Gen., 32:44 (1999), 7691–7696, arXiv: quant-ph/9905033 | DOI | MR
[21] M. Sprenger, P. Nicolini, M. Bleicher, “Physics on the smallest scales: an introduction to minimal length phenomenology”, Eur. J. Phys., 33:4 (2012), 853–862 | DOI
[22] S. K. Moayedi, M. R. Setare, B. Khosropour, “Lagrangian formulation of a magnetostatic field in the presence of a minimal length scale based on the Kempf algebra”, Internat. J. Modern Phys. A, 28:30 (2013), 1350142, 15 pp., arXiv: 1306.1070 | DOI | MR
[23] B. Khosropour, “Radiation and generalized uncertainty principle”, Phys. Lett. B, 785 (2018), 3–8 | DOI | MR
[24] B. Khosropour, “Angular momentum and Zeeman effect in the presence of a minimal length based on the Kempf–Mann–Mangano algebra”, Eur. Phys. J. Plus, 131:7 (2016), 247, 8 pp. | DOI
[25] B. Khosropour, M. Eghbali, S. Ghorbanali, “$q$-nonlinear Schrodinger and $q$-nonlinear Klein–Gordon equations in the frame work of GUP”, Gen. Rel. Grav., 50:3 (2018), 25, 9 pp. | DOI | MR
[26] M. Faizal, “Consequences of deformation of the Heisenberg algebra”, Internat. J. Geom. Meth. Modern Phys., 12:2 (2015), 1550022, 9 pp., arXiv: 1404.5024 | DOI | MR
[27] Y. Chargui, L. Chetouani, A. Trabelsi, “Exact solution of $D$-dimensional Klein–Gordon oscillator with minimal length”, Commun. Theor. Phys., 53:2 (2010), 231–236 | DOI
[28] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum, New York, 2016 | DOI
[29] K. S. Thorne, R. D. Blandford, Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics, Princeton Univ. Press, Princeton, NJ, 2017 | MR
[30] T. G. Pavlopoulos, “Breakdown of Lorentz invariance”, Phys. Rev., 159:5 (1967), 1106–1110 | DOI
[31] W. Heisenberg, “Zur Quantentheorie der Elementarteilchen”, Z. Naturforschung, 5:5 (1950), 251–259 | DOI | MR
[32] W. Heisenberg, “Über die in der Theorie der Elementarteilchen auftretende universelle Länge”, Ann. Phys., 32 (1938), 20–33 | DOI
[33] Kh. Nouicer, “Casimir effect in the presence of minimal lengths”, J. Phys. A: Math. Gen., 38:46 (2005), 10027–10035 | DOI | MR