Ground states for the Potts model with competing interactions and a countable set of spin values on a Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 367-377 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct some finitely periodic ground states for the Potts model with competing interactions and a countable set of spin values on the Cayley tree of order four.
Keywords: Cayley tree, Potts model, competing interactions, countable spin values, ground state.
@article{TMF_2021_209_2_a8,
     author = {G. I. Botirov and U. U. Qayumov},
     title = {Ground states for {the~Potts} model with competing interactions and a~countable set of spin values on {a~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--377},
     year = {2021},
     volume = {209},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a8/}
}
TY  - JOUR
AU  - G. I. Botirov
AU  - U. U. Qayumov
TI  - Ground states for the Potts model with competing interactions and a countable set of spin values on a Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 367
EP  - 377
VL  - 209
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a8/
LA  - ru
ID  - TMF_2021_209_2_a8
ER  - 
%0 Journal Article
%A G. I. Botirov
%A U. U. Qayumov
%T Ground states for the Potts model with competing interactions and a countable set of spin values on a Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 367-377
%V 209
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a8/
%G ru
%F TMF_2021_209_2_a8
G. I. Botirov; U. U. Qayumov. Ground states for the Potts model with competing interactions and a countable set of spin values on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 367-377. http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a8/

[1] E. Müller-Hartmann, “Theory of the Ising model on a Cayley tree”, Z. Phys. B, 27:2 (1977), 161–168 | DOI

[2] J. C. A. Barata, D. H. U. Marchetti, “Griffiths' singularities in diluted Ising models on the Cayley tree”, J. Stat. Phys., 88:1–2 (1997), 231–268 | DOI

[3] R. B. Potts, “Some generalized order-disorder transformations”, Proc. Cambridge Philos. Soc., 48:1 (1952), 106–109 | DOI

[4] F. Y. Wu, “The Potts model”, Rev. Modern Phys., 54:1 (1982), 235–268 | DOI

[5] U. A. Rozikov, “Gibbs measures of Potts model on Cayley trees: a survey and applications”, Rev. Modern Phys., 33 (2021), 2130007, 58 pp. | DOI

[6] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | DOI | MR | Zbl

[7] N. N. Ganikhodjaev, “The Potts model on $\mathbb{Z}^d$ with countable set of spin values”, J. Math. Phys., 45:3 (2004), 1121–1127 | DOI

[8] N. N. Ganikhodzhaev, U. A. Rozikov, “The Potts model with countable set of spin values on a Cayley tree”, Lett. Math. Phys., 75:2 (2006), 99–109 | DOI

[9] T. Funaki, H. Spohn, “Motion by mean curvature from the Ginzburg–Landau interface model”, Commun. Math. Phys., 185:1 (1997), 1–36 | DOI

[10] F. Henning, C. Külske, A. Le Ny, U. A. Rozikov, “Gradient Gibbs measures for the SOS model with countable values on a Cayley tree”, Electron. J. Probab., 24 (2019), 1–23 | DOI

[11] S. Sheffield, Random Surfaces, Astérisque, 305, Société mathématique de France, Paris, 2005 | Zbl

[12] G. I. Botirov, U. A. Rozikov, “Model Pottsa s konkuriruyuschimi vzaimodeistviyami na dereve Keli: konturnyi metod”, TMF, 153:1 (2007), 86–97 | DOI | DOI | MR | Zbl

[13] U. A. Rozikov, “On $q$-component models on Cayley tree: contour method”, Lett. Math. Phys., 71:1 (2005), 27–38 | DOI

[14] U. A. Rozikov, “A constructive description of ground states and Gibbs measures for Ising model with two-step interactions on Cayley tree”, J. Stat. Phys., 122:2 (2006), 217–235 | DOI

[15] F. Mukhamedov, U. Rozikov, J. F. F. Mendes, “On contour arguments for the three state Potts model with competing interactions on a semi-infinite Cayley tree”, J. Math. Phys., 48:1 (2007), 013301, 14 pp. | DOI | Zbl

[16] R. A. Minlos, Vvedenie v matematicheskuyu statisticheskuyu fiziku, MTsNMO, M., 2002 | DOI | MR | Zbl

[17] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl

[18] U. A. Rozikov, “A contour method on Cayley trees”, J. Stat. Phys., 130:4 (2008), 801–813, arXiv: math-ph/0611038 | DOI

[19] M. M. Rakhmatullaev, “Clabo periodicheskie mery Gibbsa i osnovnye sostoyaniya dlya modeli Pottsa s konkuriruyuschimi vzaimodeistviyami na dereve Keli”, TMF, 176:3 (2013), 477–493 | DOI | DOI | MR | Zbl

[20] M. M. Rahmatullaev, M. A. Rasulova, “Periodic and weakly periodic ground states for the Potts model with competing interactions on the Cayley tree”, Siberian Adv. Math., 26:3 (2016), 215–229 | DOI

[21] G. I. Botirov, M. M. Rakhmatullaev, “Ground states for Potts model with a countable set of spin values on a Cayley tree”, Algebra, Complex Analysis, and Pluripotential Theory, Springer Proceedings in Mathematical Statistics, 264, eds. Z. Ibragimov, N. Levenberg, U. Rozikov, A. Sadullaev, Springer, Cham, 2018, 59–71 | MR | Zbl

[22] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl

[23] N. N. Ganikhodzhaev, “Gruppovoe predstavlenie i avtomorfizmy na dereve Keli”, Dokl. AN RUz, 4 (1994), 3–5