Mots-clés : $N$-soliton solution.
@article{TMF_2021_209_2_a5,
author = {Jia Cheng and Shou-Fu Tian and Zhi-Jia Wu},
title = {On the~$\bar\partial$-problem and dressing method for the~ complex vector modified {KdV} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {305--326},
year = {2021},
volume = {209},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a5/}
}
TY - JOUR AU - Jia Cheng AU - Shou-Fu Tian AU - Zhi-Jia Wu TI - On the $\bar\partial$-problem and dressing method for the complex vector modified KdV equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 305 EP - 326 VL - 209 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a5/ LA - ru ID - TMF_2021_209_2_a5 ER -
%0 Journal Article %A Jia Cheng %A Shou-Fu Tian %A Zhi-Jia Wu %T On the $\bar\partial$-problem and dressing method for the complex vector modified KdV equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 305-326 %V 209 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a5/ %G ru %F TMF_2021_209_2_a5
Jia Cheng; Shou-Fu Tian; Zhi-Jia Wu. On the $\bar\partial$-problem and dressing method for the complex vector modified KdV equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 305-326. http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a5/
[1] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR
[2] A. S. Fokas, A. R. Its, “An initial boundary value problem for the Korteweg–de Vries equation”, Math. Comput. Simul., 37:4–5 (1994), 293–321 | DOI
[3] N. Yajima, M. Oikawa, “A class of exactly solvable nonlinear evolution equations”, Progr. Theoret. Phys., 54:5 (1975), 1576–1577 | DOI
[4] P. A. Treharne, A. S. Fokas, “The generalized Dirichlet to Neumann map for the KdV equation on the half-line”, J. Nonlinear Sci., 18:2 (2008), 191–217 | DOI
[5] W.-X. Ma, Y. You, “Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions”, Trans. Amer. Math. Soc., 357:5 (2005), 1753–1778, arXiv: nlin/0503001 | DOI
[6] M. Wadati, “The modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 34:5 (1973), 1289–1296 | DOI
[7] A. H. Khater, O. H. El-Kalaawy, D. K. Callebaut, “Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron-positron plasma”, Phys. Scr., 58:6 (1998), 545–548 | DOI
[8] W. K. Schief, “An infinite hierarchy of symmetries associated with hyperbolic surfaces”, Nonlinearity, 8:1 (1995), 1–9 | DOI
[9] S. Matsutani, H. Tsuru, “Reflectionless quantum wire”, J. Phys. Soc. Japan, 60:11 (1991), 3640–3644 | DOI
[10] M. Wadati, K. Ohkuma, “Multiple-pole solutions of the modified Korteweg-de Vries equation”, J. Phys. Soc. Japan, 51:6 (1982), 2029–2035 | DOI
[11] T. C. A. Yeung, P. C. W. Fung, “Hamiltonian formulation of the inverse scattering method of the modified KdV equation under the non-vanishing boundary condition $u(x,t)\to b$ as $x\to\pm\infty$”, J. Phys. A: Math. Gen., 21:18 (1988), 3575–3592 | DOI
[12] G. Zhang, Z. Yan, Focusing and defocusing mKdV equations with nonzero boundary conditions: inverse scattering transforms and soliton interactions, Phys. D, 410, 2020, arXiv: 1810.12150 | DOI
[13] J.-S. He, S.-R. Chen, “Hamiltonian formalism of mKdV equation with non-vanishing boundary values”, Commun. Theor. Phys., 44:2 (2005), 321–325 | DOI
[14] D. E. Baldwin, Dispersive shock wave interactions and two-dimensional oceanwave soliton interactions, Ph. D. thesis, University of Colorado, 2013
[15] T. Tsuchida, M. Wadati, “The coupled modified Korteweg-de Vries equations”, J. Phys. Soc. Japan, 67:4 (1998), 1175–1187, arXiv: solv-int/9812003 | DOI
[16] J. Wu, X. Geng, “Inverse scattering transform and soliton classification of the coupled modified Korteweg–de Vries equation”, Commun. Nonlin. Sci. Numer. Simul., 53 (2017), 83–93 | DOI | MR
[17] D.-J. Zhang, S.-L. Zhao, Y.-Y. Sun, J. Zhou, “Solutions to the modified Korteweg–de Vries equation”, Rev. Math. Phys., 26:7 (2014), 1430006 | DOI
[18] R. Hirota, “Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons”, J. Phys. Soc. Japan, 33:5 (1972), 1456–1458 | DOI
[19] Y.-Zhang, X. Tao, S. Xu, “The bound-state soliton solutions of the complex modified KdV equation”, Inverse Problems, 36:6 (2020), 065003 | DOI
[20] S.-F. Tian, “Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method”, J. Phys. A: Math. Theor., 50:39 (2017), 395204, 32 pp. | DOI | MR
[21] S.-F. Tian, “Initial-boundary value problems for the coupled modified Korteweg–de Vries equation on the interval”, Commun. Pure Appl. Anal., 17:3 (2018), 923–957 | DOI | MR
[22] W.-X. Ma, “Riemann–Hilbert problems and $N$-soliton solutions for a coupled mKdV system”, J. Geom. Phys., 132 (2018), 45–54 | DOI | MR
[23] C. Athorne, A. Fordy, “Generalised KdV and MKdV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20:6 (1987), 1377–1386 | DOI
[24] J.-J. Yang, S.-F. Tian, Z.-Q. Li, Inverse scattering transform and soliton solutions for the modified matrix Korteweg–de Vries equation with nonzero boundary conditions, arXiv: 2005.00290
[25] H. Liu, X. Geng, “Initial-boundary problems for the vector modified Korteweg-de Vries equation via Fokas unified transform method”, J. Math. Anal. Appl., 440:2 (2016), 578–596 | DOI
[26] Tszin-Tsze Yan, Shou-Fu Tyan, “Zadacha Rimana–Gilberta dlya modifitsirovannogo uravneniya Landau–Lifshitsa s nenulevymi granichnymi usloviyami”, TMF, 205:3 (2020), 420–450 | DOI | DOI
[27] S. V. Manakov, “K teorii dvumernoi statsionarnoi samofokusirovki elektromagnitnykh voln”, ZhETF, 65:2 (1973), 505–516
[28] A. P. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Commun. Math. Phys., 89:3 (1983), 427–443 | DOI | MR
[29] D.-S. Wang, D.-J. Zhang, J. Yang, “Integrable properties of the general coupled nonlinear Schrödinger equations”, J. Math. Phys., 51:2 (2010), 023510, 17 pp. | DOI | MR
[30] X.-B. Wang, B. Han, “Application of the Riemann–Hilbert method to the vector modified Korteweg–de Vries equation”, Nonlinear Dyn., 99:2 (2020), 1363–1377 | DOI
[31] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl
[32] R. Beals, R. R. Coifman, “The $D$-bar approach to inverse scattering and nonlinear evolutions”, Phys. D, 18:1–3 (1986), 242–249 | DOI
[33] M. J. Ablowitz, D. Bar Jaacov, A. S. Fokas, “On the inverse scattering transform for the Kadomtsev–Petviashvili equation”, Stud. Appl. Math., 69:2 (1983), 135–143 | DOI
[34] S. V. Manakov, “The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev–Petviashvili equation”, Phys. D, 3:1–2 (1981), 420–427 | DOI
[35] A. S. Fokas, P. M. Santini, “Dromions and a boundary value problem for the Davey–Stewartson 1 equation”, Phys. D, 44:1–2 (1990), 99–130 | DOI
[36] V. E. Zakharov, S. V. Manakov, “Postroenie mnogomernykh nelineinykh integriruemykh sistem i ikh reshenii”, Funkts. analiz i ego pril., 19:2 (1985), 11–25 | DOI | MR | Zbl
[37] V. G. Dubrovsky, “The $\bar\partial$-dressing method and the solutions with constant asymptotic values at infinity of DS-II equation”, J. Math. Phys., 38:12 (1997), 6382–6400 | DOI
[38] J. Zhu, X. Geng, “The AB equations and the $\bar\partial$-dressing method in semi-characteristic coordinates”, Math. Phys. Anal. Geom., 17:1–2 (2014), 49–65 | DOI
[39] P. V. Nabelek, V. E. Zakharov, “Solutions to the Kaup–Broer system and its $(2+1)$ dimensional integrable generalization via the dressing method”, Phys. D, 409 (2020), 132478, 21 pp. | DOI
[40] J. Zhu, S. Zhou, Z. Qiao, “Forced ($2+1$)-dimensional discrete three-wave equation”, Commun. Theor. Phys., 72:1 (2020), 015004 | DOI
[41] J. Luo, E. Fan, “$\bar\partial$-Dressing method for the coupled Gerdjikov–Ivanov equation”, Appl. Math. Lett., 110 (2020), 106589 | DOI
[42] X. Wang, J. Zhu, Z. Qiao, “New solutions to the differential-difference KP equation”, Appl. Math. Lett., 113 (2021), 106836 | DOI
[43] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl
[44] R. Beals, R. R. Coifman, “Linear spectral problems, non-linear equations and $\delta$-method”, Inverse Problems, 5:2 (1989), 87–130 | DOI
[45] A. S. Fokas, P. M. Santini, “The dressing method and nonlocal Riemann–Hilbert problem”, J. Nonlinear Sci., 2:1 (1992), 109–134 | DOI
[46] B. G. Konopelchenko, Solutions in Multidimensions: Inverse Spectral Transform Method, Word Sci., Singapore, 1993 | DOI | MR | Zbl
[47] L. V. Bogdanov, V. E. Zakharov, “The Boussinesq equation revisited”, Phys. D, 165:3–4 (2002), 137–162 | DOI
[48] N. Wang, M. Wadati, “Noncommutative extension of $\bar\partial$-dressing method”, J. Phys. Soc. Japan, 72:6 (2003), 1366–1373 | DOI
[49] P. V. Nabelek, “On solutions to the nonlocal $\bar\partial$-problem and ($2+1$) dimensional completely integrable systems”, Lett. Math. Phys., 111:1 (2021), 16, 13 pp. ; “Correction to: On solutions to the nonlocal $\bar\partial$-problem and ($2+1$) dimensional completely integrable systems”, 111:2, 2, arXiv: 2008.13237 | DOI | DOI
[50] Y. Kuang, J. Zhu, “A three-wave interaction model with self-consistent sources: The $\bar\partial$-dressing method and solutions”, J. Math. Anal. Appl., 426:2 (2015), 783–793 | DOI
[51] Q. Cheng, Y. Yang, E. Fan, Long-time asymptotic behavior of a mixed Schrödinger equation with weighted Sobolev initial data, arXiv: 2011.00919
[52] Y. Yang, E. Fan, Long-time asymptotic behavior of the modified Camassa–Holm equation, arXiv: 2101.02489v1