On the $\bar\partial$-problem and dressing method for the  complex vector modified KdV equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 305-326 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Starting from a $5\times 5$ local matrix $\bar\partial$-problem, we successfully use the $\bar\partial$-dressing method to derive a hierarchy of nonlinear evolution equations including the nonlinear Schrödinger equation as $n=2$, the vector modified Korteweg–de Vries equation as $n=3$, and the Lakshmanan–Porsezian–Danielvia equation as $n=4$ via introducing a suitable recursion operator $\Lambda^n$. In addition, we employ the $\bar\partial$-dressing method to find the $N$-soliton solutions of the vmKdV equation. Finally, the effects of each parameter on interactions between solitons are discussed, and the effects of the characteristic lines on the relative position of the waves are also analyzed. The method for controlling the propagation direction is presented in detail.
Keywords: vector modified Korteweg–de Vries equation, $\bar\partial$-dressing method, recursion operator
Mots-clés : $N$-soliton solution.
@article{TMF_2021_209_2_a5,
     author = {Jia Cheng and Shou-Fu Tian and Zhi-Jia Wu},
     title = {On the~$\bar\partial$-problem and dressing method for the~ complex vector modified {KdV} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {305--326},
     year = {2021},
     volume = {209},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a5/}
}
TY  - JOUR
AU  - Jia Cheng
AU  - Shou-Fu Tian
AU  - Zhi-Jia Wu
TI  - On the $\bar\partial$-problem and dressing method for the  complex vector modified KdV equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 305
EP  - 326
VL  - 209
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a5/
LA  - ru
ID  - TMF_2021_209_2_a5
ER  - 
%0 Journal Article
%A Jia Cheng
%A Shou-Fu Tian
%A Zhi-Jia Wu
%T On the $\bar\partial$-problem and dressing method for the  complex vector modified KdV equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 305-326
%V 209
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a5/
%G ru
%F TMF_2021_209_2_a5
Jia Cheng; Shou-Fu Tian; Zhi-Jia Wu. On the $\bar\partial$-problem and dressing method for the  complex vector modified KdV equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 305-326. http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a5/

[1] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[2] A. S. Fokas, A. R. Its, “An initial boundary value problem for the Korteweg–de Vries equation”, Math. Comput. Simul., 37:4–5 (1994), 293–321 | DOI

[3] N. Yajima, M. Oikawa, “A class of exactly solvable nonlinear evolution equations”, Progr. Theoret. Phys., 54:5 (1975), 1576–1577 | DOI

[4] P. A. Treharne, A. S. Fokas, “The generalized Dirichlet to Neumann map for the KdV equation on the half-line”, J. Nonlinear Sci., 18:2 (2008), 191–217 | DOI

[5] W.-X. Ma, Y. You, “Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions”, Trans. Amer. Math. Soc., 357:5 (2005), 1753–1778, arXiv: nlin/0503001 | DOI

[6] M. Wadati, “The modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 34:5 (1973), 1289–1296 | DOI

[7] A. H. Khater, O. H. El-Kalaawy, D. K. Callebaut, “Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron-positron plasma”, Phys. Scr., 58:6 (1998), 545–548 | DOI

[8] W. K. Schief, “An infinite hierarchy of symmetries associated with hyperbolic surfaces”, Nonlinearity, 8:1 (1995), 1–9 | DOI

[9] S. Matsutani, H. Tsuru, “Reflectionless quantum wire”, J. Phys. Soc. Japan, 60:11 (1991), 3640–3644 | DOI

[10] M. Wadati, K. Ohkuma, “Multiple-pole solutions of the modified Korteweg-de Vries equation”, J. Phys. Soc. Japan, 51:6 (1982), 2029–2035 | DOI

[11] T. C. A. Yeung, P. C. W. Fung, “Hamiltonian formulation of the inverse scattering method of the modified KdV equation under the non-vanishing boundary condition $u(x,t)\to b$ as $x\to\pm\infty$”, J. Phys. A: Math. Gen., 21:18 (1988), 3575–3592 | DOI

[12] G. Zhang, Z. Yan, Focusing and defocusing mKdV equations with nonzero boundary conditions: inverse scattering transforms and soliton interactions, Phys. D, 410, 2020, arXiv: 1810.12150 | DOI

[13] J.-S. He, S.-R. Chen, “Hamiltonian formalism of mKdV equation with non-vanishing boundary values”, Commun. Theor. Phys., 44:2 (2005), 321–325 | DOI

[14] D. E. Baldwin, Dispersive shock wave interactions and two-dimensional oceanwave soliton interactions, Ph. D. thesis, University of Colorado, 2013

[15] T. Tsuchida, M. Wadati, “The coupled modified Korteweg-de Vries equations”, J. Phys. Soc. Japan, 67:4 (1998), 1175–1187, arXiv: solv-int/9812003 | DOI

[16] J. Wu, X. Geng, “Inverse scattering transform and soliton classification of the coupled modified Korteweg–de Vries equation”, Commun. Nonlin. Sci. Numer. Simul., 53 (2017), 83–93 | DOI | MR

[17] D.-J. Zhang, S.-L. Zhao, Y.-Y. Sun, J. Zhou, “Solutions to the modified Korteweg–de Vries equation”, Rev. Math. Phys., 26:7 (2014), 1430006 | DOI

[18] R. Hirota, “Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons”, J. Phys. Soc. Japan, 33:5 (1972), 1456–1458 | DOI

[19] Y.-Zhang, X. Tao, S. Xu, “The bound-state soliton solutions of the complex modified KdV equation”, Inverse Problems, 36:6 (2020), 065003 | DOI

[20] S.-F. Tian, “Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method”, J. Phys. A: Math. Theor., 50:39 (2017), 395204, 32 pp. | DOI | MR

[21] S.-F. Tian, “Initial-boundary value problems for the coupled modified Korteweg–de Vries equation on the interval”, Commun. Pure Appl. Anal., 17:3 (2018), 923–957 | DOI | MR

[22] W.-X. Ma, “Riemann–Hilbert problems and $N$-soliton solutions for a coupled mKdV system”, J. Geom. Phys., 132 (2018), 45–54 | DOI | MR

[23] C. Athorne, A. Fordy, “Generalised KdV and MKdV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20:6 (1987), 1377–1386 | DOI

[24] J.-J. Yang, S.-F. Tian, Z.-Q. Li, Inverse scattering transform and soliton solutions for the modified matrix Korteweg–de Vries equation with nonzero boundary conditions, arXiv: 2005.00290

[25] H. Liu, X. Geng, “Initial-boundary problems for the vector modified Korteweg-de Vries equation via Fokas unified transform method”, J. Math. Anal. Appl., 440:2 (2016), 578–596 | DOI

[26] Tszin-Tsze Yan, Shou-Fu Tyan, “Zadacha Rimana–Gilberta dlya modifitsirovannogo uravneniya Landau–Lifshitsa s nenulevymi granichnymi usloviyami”, TMF, 205:3 (2020), 420–450 | DOI | DOI

[27] S. V. Manakov, “K teorii dvumernoi statsionarnoi samofokusirovki elektromagnitnykh voln”, ZhETF, 65:2 (1973), 505–516

[28] A. P. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Commun. Math. Phys., 89:3 (1983), 427–443 | DOI | MR

[29] D.-S. Wang, D.-J. Zhang, J. Yang, “Integrable properties of the general coupled nonlinear Schrödinger equations”, J. Math. Phys., 51:2 (2010), 023510, 17 pp. | DOI | MR

[30] X.-B. Wang, B. Han, “Application of the Riemann–Hilbert method to the vector modified Korteweg–de Vries equation”, Nonlinear Dyn., 99:2 (2020), 1363–1377 | DOI

[31] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl

[32] R. Beals, R. R. Coifman, “The $D$-bar approach to inverse scattering and nonlinear evolutions”, Phys. D, 18:1–3 (1986), 242–249 | DOI

[33] M. J. Ablowitz, D. Bar Jaacov, A. S. Fokas, “On the inverse scattering transform for the Kadomtsev–Petviashvili equation”, Stud. Appl. Math., 69:2 (1983), 135–143 | DOI

[34] S. V. Manakov, “The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev–Petviashvili equation”, Phys. D, 3:1–2 (1981), 420–427 | DOI

[35] A. S. Fokas, P. M. Santini, “Dromions and a boundary value problem for the Davey–Stewartson 1 equation”, Phys. D, 44:1–2 (1990), 99–130 | DOI

[36] V. E. Zakharov, S. V. Manakov, “Postroenie mnogomernykh nelineinykh integriruemykh sistem i ikh reshenii”, Funkts. analiz i ego pril., 19:2 (1985), 11–25 | DOI | MR | Zbl

[37] V. G. Dubrovsky, “The $\bar\partial$-dressing method and the solutions with constant asymptotic values at infinity of DS-II equation”, J. Math. Phys., 38:12 (1997), 6382–6400 | DOI

[38] J. Zhu, X. Geng, “The AB equations and the $\bar\partial$-dressing method in semi-characteristic coordinates”, Math. Phys. Anal. Geom., 17:1–2 (2014), 49–65 | DOI

[39] P. V. Nabelek, V. E. Zakharov, “Solutions to the Kaup–Broer system and its $(2+1)$ dimensional integrable generalization via the dressing method”, Phys. D, 409 (2020), 132478, 21 pp. | DOI

[40] J. Zhu, S. Zhou, Z. Qiao, “Forced ($2+1$)-dimensional discrete three-wave equation”, Commun. Theor. Phys., 72:1 (2020), 015004 | DOI

[41] J. Luo, E. Fan, “$\bar\partial$-Dressing method for the coupled Gerdjikov–Ivanov equation”, Appl. Math. Lett., 110 (2020), 106589 | DOI

[42] X. Wang, J. Zhu, Z. Qiao, “New solutions to the differential-difference KP equation”, Appl. Math. Lett., 113 (2021), 106836 | DOI

[43] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl

[44] R. Beals, R. R. Coifman, “Linear spectral problems, non-linear equations and $\delta$-method”, Inverse Problems, 5:2 (1989), 87–130 | DOI

[45] A. S. Fokas, P. M. Santini, “The dressing method and nonlocal Riemann–Hilbert problem”, J. Nonlinear Sci., 2:1 (1992), 109–134 | DOI

[46] B. G. Konopelchenko, Solutions in Multidimensions: Inverse Spectral Transform Method, Word Sci., Singapore, 1993 | DOI | MR | Zbl

[47] L. V. Bogdanov, V. E. Zakharov, “The Boussinesq equation revisited”, Phys. D, 165:3–4 (2002), 137–162 | DOI

[48] N. Wang, M. Wadati, “Noncommutative extension of $\bar\partial$-dressing method”, J. Phys. Soc. Japan, 72:6 (2003), 1366–1373 | DOI

[49] P. V. Nabelek, “On solutions to the nonlocal $\bar\partial$-problem and ($2+1$) dimensional completely integrable systems”, Lett. Math. Phys., 111:1 (2021), 16, 13 pp. ; “Correction to: On solutions to the nonlocal $\bar\partial$-problem and ($2+1$) dimensional completely integrable systems”, 111:2, 2, arXiv: 2008.13237 | DOI | DOI

[50] Y. Kuang, J. Zhu, “A three-wave interaction model with self-consistent sources: The $\bar\partial$-dressing method and solutions”, J. Math. Anal. Appl., 426:2 (2015), 783–793 | DOI

[51] Q. Cheng, Y. Yang, E. Fan, Long-time asymptotic behavior of a mixed Schrödinger equation with weighted Sobolev initial data, arXiv: 2011.00919

[52] Y. Yang, E. Fan, Long-time asymptotic behavior of the modified Camassa–Holm equation, arXiv: 2101.02489v1