Mots-clés : soliton solution.
@article{TMF_2021_209_2_a4,
author = {DeQin Qiu and Cong Lv},
title = {Riemann{\textendash}Hilbert approach and $N$-soliton solutions of the~generalized mixed nonlinear {Schr\"odinger} equation with nonzero boundary conditions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {274--304},
year = {2021},
volume = {209},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a4/}
}
TY - JOUR AU - DeQin Qiu AU - Cong Lv TI - Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation with nonzero boundary conditions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 274 EP - 304 VL - 209 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a4/ LA - ru ID - TMF_2021_209_2_a4 ER -
%0 Journal Article %A DeQin Qiu %A Cong Lv %T Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation with nonzero boundary conditions %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 274-304 %V 209 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a4/ %G ru %F TMF_2021_209_2_a4
DeQin Qiu; Cong Lv. Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation with nonzero boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 274-304. http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a4/
[1] A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical physics in dispersive dielectric fibers. I. Anomalous dispersion”, Appl. Phys. Lett., 23:3 (1972), 142–144 | DOI
[2] G. Agraval, Nelineinaya volokonnaya optika, Mir, M., 1996
[3] D. J. Benney, A. C. Newell, “Propagation of nonlinear wave envelopes”, J. Math. Phys., 46:1–4 (1967), 133–139 | DOI
[4] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, “Theory of Bose–Einstein condensation in trapped gases”, Rev. Modern Phys., 71:3 (1999), 463–512, arXiv: cond-mat/9806038 | DOI
[5] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, Cambridge Univ. Press, Cambridge, 2004 | DOI
[6] Y. Li, X. Gu, M. Zou, “Three kinds of Darboux transformation for the evolution equation which connect with A.K.N.S. eigenvalue problem”, Acta Math. Sin. (N. S.), 3 (1987), 143–151 | DOI | Zbl
[7] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl
[8] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR
[9] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinoi srede”, ZhETF, 61:1 (1971), 118–134 | MR
[10] Y.-C. Ma, M. J. Ablowitz, “The periodic cubic Schrödinger equation”, Stud. Appl. Math., 65:2 (1981), 113–158 | DOI
[11] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI
[12] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR
[13] T. Brabec, F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics”, Rev. Modern Phys., 72:2 (2000), 545–591 | DOI
[14] F. Krausz, M. Ivanov, “Attosecond physics”, Rev. Modern Phys., 81:1 (2009), 163–234 | DOI
[15] R. S. Johnson, “On the modulation of water waves in the neighbourhood of $kh\approx 1.363$”, Proc. Roy. Soc. London Ser. A, 357:1689 (1977), 131–141 | DOI
[16] Y. Kodama, “Optical solitons in a monomode fiber”, J. Stat. Phys., 39:5–6 (1985), 597–614 | DOI
[17] P. A. Clarkson, J. A. Tuszynski, “Exact solutions of the multidimensional derivative nonlinear Schrödinger equation for many-body systems of criticality”, J. Phys. A: Math. Gen., 23:19 (1990), 4269–4288 | DOI
[18] A. Rogister, “Parallel propagation of nonlinear low-frequency waves in high-$\beta$ plasma”, Phys. Fluids, 14:12 (1971), 2733–2739 | DOI
[19] D. J. Kaup, A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 798–801 | DOI
[20] E. Mjolhus, “On the modulational instability of hydromagnetic waves parallel to the magnetic field”, J. Plasma Phys., 16:3 (1976), 321–334 | DOI
[21] N. Tzoar, M. Jain, “Self-phase modulation in long-geometry optical waveguides”, Phys. Rev. A, 23:3 (1981), 1266–1270 | DOI
[22] D. Anderson, M. Lisak, “Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides”, Phys. Rev. A, 27:3 (1983), 1393–1398 | DOI
[23] H. H. Chen, Y. C. Lee, C. S. Liu, “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Phys. Scr., 20:3–4 (1979), 490–492 | DOI
[24] V. S. Gerdjikov, M. I. Ivanov, “A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures”, Bulg. J. Phys., 10 (1983), 130–143
[25] J. Moses, B. A. Malomed, F. W. Wise, “Self-steepening of ultrashort optical pulses without self-phase-modulation”, Phys. Rev. A, 76:2 (2007), 021802, 4 pp. | DOI
[26] A. Kundu, “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI
[27] Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials”, Phys. Rev. A, 84:3 (2011), 033815, 7 pp. | DOI
[28] A. Choudhuri, K. Porsezian, “Dark-in-the-Bright solitary wave solution of higher-order nonlinear Schrödinger equation with non-Kerr terms”, Opt. Commun., 285:3 (2012), 364–367 | DOI
[29] P. A. Clarkson, C. M. Cosgrove, “Painlevé analysis of the non-linear Schrödinger family of equations”, J. Phys. A: Math. Gen., 20:8 (1987), 2003–2024 | DOI
[30] S. Kakei, N. Sasa, J. Satsuma, “Bilinearization of a generalized derivative nonlinear Schrödinger equation”, J. Phys. Soc. Japan, 64:5 (1995), 1519–1523, arXiv: solv-int/9501005 | DOI
[31] X. Lü, “Soliton behavior for a generalized mixed nonlinear Schrödinger model with $N$-fold Darboux transformation”, Chaos, 23:3 (2013), 033137, 8 pp. | DOI | Zbl
[32] D. Qiu, Q. P. Liu, “Darboux transformation of the generalized mixed nonlinear Schrödinger equation revisited”, Chaos, 30:12 (2020), 123111, 17 pp. | DOI | Zbl
[33] X. Lü, M. Peng, “Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics”, Commun. Nonlinear Sci. Numer. Simulat., 18:9 (2013), 2304–2312 | DOI
[34] L. Wang, D.-Y. Jiang, F.-H. Qi, Y.-Y. Shi, Y.-C. Zhao, “Dynamics of the higher-order rogue waves for a generalized mixed nonlinear Schrödinger model”, Commun. Nonlinear Sci. Numer. Simulat., 42 (2017), 502–519 | DOI
[35] B. Yang, J. Chen, J. Yang, “Rogue waves in the generalized derivative nonlinear Schrödinger equations”, J. Nonlinear Sci., 30:6 (2020), 3027–3056, arXiv: 1912.05589 | DOI | Zbl
[36] J. K. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Mathematical Modeling and Computation, 16, SIAM, Philadelphia, PA, 2010 | DOI | Zbl
[37] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems”, Ann. Math., 137:2 (1993), 295–368 | DOI
[38] G. Biondini, G. Kov$\breve{a}$aci$\breve{c}$, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | Zbl
[39] M. Pichler, G. Biondini, “On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles”, IMA J. Appl. Math., 82:1 (2017), 131–151 | DOI | Zbl
[40] G. Biondini, D. K. Kraus, “Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions”, SIAM J. Math. Anal., 47:1 (2015), 706–757 | DOI | Zbl
[41] B. Prinari, M. J. Ablowitz, G. Biondini, “Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions”, J. Math. Phys., 47:6 (2006), 063508, 33 pp. | DOI | Zbl
[42] G. Biondini, D. K. Kraus, B. Prinari, “The three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions”, Commun. Math. Phys., 348:2 (2016), 475–533, arXiv: 1511.02885 | DOI | Zbl
[43] G. Zhang, Z. Yan, “The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: Inverse scattering transforms and $N$-double-pole solutions”, J. Nonlinear Sci., 30:6 (2020), 3089–3127 | DOI | Zbl
[44] Z. Zhang, E. Fan, “Inverse scattering transform for the Gerdjikov-Ivanov equation with nonzero boundary conditions”, Z. Angew. Math. Phys., 71:5 (2020), 149, 28 pp.
[45] Y. Yang, E. Fan, Riemann–Hilbert approach to the modified nonlinear Schrödinger equation with non-vanishing asymptotic boundary conditions, arXiv: 1910.07720
[46] L.-L. Wen, E.-G. Fan, “The Riemann–Hilbert approach to focusing Kundu–Eckhaus equation with non-zero boundary conditions”, Modern Phys. Lett. B, 34:30 (2020), 2050332, 20 pp., arXiv: 1910.08921 | DOI
[47] N. Guo, J. Xu, Inverse scattering transform for the Kundu–Eckhaus equation with nonzero boundary conditions, arXiv: 1912.11424
[48] N. Guo, J. Xu, L. Wen, E. Fan, “Rogue wave and multi-pole solutions for the focusing Kundu–Eckhaus equation with nonzero background via Riemann–Hilbert problem method”, Nonlinear Dyn., 103:2 (2021), 1851–1868 | DOI