Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation with nonzero boundary conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 274-304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the inverse scattering transformation to the generalized mixed nonlinear Schrödinger equation with nonzero boundary condition at infinity. The scattering theories are investigated. In the direct problem, we analyze the analyticity, symmetries, and asymptotic behaviors of the Jost solutions and the scattering matrix, and the properties of the discrete spectrum. In the inverse problem, an appropriate Riemann–Hilbert problem is formulated. By solving the problem, we obtain the reconstruction formula, the trace formula, and the “theta” condition. In the reflectionless case, a complicated integral factor is derived, which is a key ingredient of the explicit expression for $N$-soliton solutions. Using the $N$-soliton formula, we discuss the abundant dynamical features of the solution and its phases at different parameter values.
Keywords: Riemann–Hilbert problem, generalized mixed nonlinear Schrödinger equation
Mots-clés : soliton solution.
@article{TMF_2021_209_2_a4,
     author = {DeQin Qiu and Cong Lv},
     title = {Riemann{\textendash}Hilbert approach and $N$-soliton solutions of the~generalized mixed nonlinear {Schr\"odinger} equation with nonzero boundary conditions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {274--304},
     year = {2021},
     volume = {209},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a4/}
}
TY  - JOUR
AU  - DeQin Qiu
AU  - Cong Lv
TI  - Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation with nonzero boundary conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 274
EP  - 304
VL  - 209
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a4/
LA  - ru
ID  - TMF_2021_209_2_a4
ER  - 
%0 Journal Article
%A DeQin Qiu
%A Cong Lv
%T Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation with nonzero boundary conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 274-304
%V 209
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a4/
%G ru
%F TMF_2021_209_2_a4
DeQin Qiu; Cong Lv. Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation with nonzero boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 274-304. http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a4/

[1] A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical physics in dispersive dielectric fibers. I. Anomalous dispersion”, Appl. Phys. Lett., 23:3 (1972), 142–144 | DOI

[2] G. Agraval, Nelineinaya volokonnaya optika, Mir, M., 1996

[3] D. J. Benney, A. C. Newell, “Propagation of nonlinear wave envelopes”, J. Math. Phys., 46:1–4 (1967), 133–139 | DOI

[4] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, “Theory of Bose–Einstein condensation in trapped gases”, Rev. Modern Phys., 71:3 (1999), 463–512, arXiv: cond-mat/9806038 | DOI

[5] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, Cambridge Univ. Press, Cambridge, 2004 | DOI

[6] Y. Li, X. Gu, M. Zou, “Three kinds of Darboux transformation for the evolution equation which connect with A.K.N.S. eigenvalue problem”, Acta Math. Sin. (N. S.), 3 (1987), 143–151 | DOI | Zbl

[7] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[8] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR

[9] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinoi srede”, ZhETF, 61:1 (1971), 118–134 | MR

[10] Y.-C. Ma, M. J. Ablowitz, “The periodic cubic Schrödinger equation”, Stud. Appl. Math., 65:2 (1981), 113–158 | DOI

[11] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI

[12] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[13] T. Brabec, F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics”, Rev. Modern Phys., 72:2 (2000), 545–591 | DOI

[14] F. Krausz, M. Ivanov, “Attosecond physics”, Rev. Modern Phys., 81:1 (2009), 163–234 | DOI

[15] R. S. Johnson, “On the modulation of water waves in the neighbourhood of $kh\approx 1.363$”, Proc. Roy. Soc. London Ser. A, 357:1689 (1977), 131–141 | DOI

[16] Y. Kodama, “Optical solitons in a monomode fiber”, J. Stat. Phys., 39:5–6 (1985), 597–614 | DOI

[17] P. A. Clarkson, J. A. Tuszynski, “Exact solutions of the multidimensional derivative nonlinear Schrödinger equation for many-body systems of criticality”, J. Phys. A: Math. Gen., 23:19 (1990), 4269–4288 | DOI

[18] A. Rogister, “Parallel propagation of nonlinear low-frequency waves in high-$\beta$ plasma”, Phys. Fluids, 14:12 (1971), 2733–2739 | DOI

[19] D. J. Kaup, A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 798–801 | DOI

[20] E. Mjolhus, “On the modulational instability of hydromagnetic waves parallel to the magnetic field”, J. Plasma Phys., 16:3 (1976), 321–334 | DOI

[21] N. Tzoar, M. Jain, “Self-phase modulation in long-geometry optical waveguides”, Phys. Rev. A, 23:3 (1981), 1266–1270 | DOI

[22] D. Anderson, M. Lisak, “Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides”, Phys. Rev. A, 27:3 (1983), 1393–1398 | DOI

[23] H. H. Chen, Y. C. Lee, C. S. Liu, “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Phys. Scr., 20:3–4 (1979), 490–492 | DOI

[24] V. S. Gerdjikov, M. I. Ivanov, “A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures”, Bulg. J. Phys., 10 (1983), 130–143

[25] J. Moses, B. A. Malomed, F. W. Wise, “Self-steepening of ultrashort optical pulses without self-phase-modulation”, Phys. Rev. A, 76:2 (2007), 021802, 4 pp. | DOI

[26] A. Kundu, “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI

[27] Y. J. Xiang, X. Y. Dai, S. C. Wen, J. Guo, D. Y. Fan, “Controllable Raman soliton self-frequency shift in nonlinear metamaterials”, Phys. Rev. A, 84:3 (2011), 033815, 7 pp. | DOI

[28] A. Choudhuri, K. Porsezian, “Dark-in-the-Bright solitary wave solution of higher-order nonlinear Schrödinger equation with non-Kerr terms”, Opt. Commun., 285:3 (2012), 364–367 | DOI

[29] P. A. Clarkson, C. M. Cosgrove, “Painlevé analysis of the non-linear Schrödinger family of equations”, J. Phys. A: Math. Gen., 20:8 (1987), 2003–2024 | DOI

[30] S. Kakei, N. Sasa, J. Satsuma, “Bilinearization of a generalized derivative nonlinear Schrödinger equation”, J. Phys. Soc. Japan, 64:5 (1995), 1519–1523, arXiv: solv-int/9501005 | DOI

[31] X. Lü, “Soliton behavior for a generalized mixed nonlinear Schrödinger model with $N$-fold Darboux transformation”, Chaos, 23:3 (2013), 033137, 8 pp. | DOI | Zbl

[32] D. Qiu, Q. P. Liu, “Darboux transformation of the generalized mixed nonlinear Schrödinger equation revisited”, Chaos, 30:12 (2020), 123111, 17 pp. | DOI | Zbl

[33] X. Lü, M. Peng, “Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics”, Commun. Nonlinear Sci. Numer. Simulat., 18:9 (2013), 2304–2312 | DOI

[34] L. Wang, D.-Y. Jiang, F.-H. Qi, Y.-Y. Shi, Y.-C. Zhao, “Dynamics of the higher-order rogue waves for a generalized mixed nonlinear Schrödinger model”, Commun. Nonlinear Sci. Numer. Simulat., 42 (2017), 502–519 | DOI

[35] B. Yang, J. Chen, J. Yang, “Rogue waves in the generalized derivative nonlinear Schrödinger equations”, J. Nonlinear Sci., 30:6 (2020), 3027–3056, arXiv: 1912.05589 | DOI | Zbl

[36] J. K. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Mathematical Modeling and Computation, 16, SIAM, Philadelphia, PA, 2010 | DOI | Zbl

[37] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems”, Ann. Math., 137:2 (1993), 295–368 | DOI

[38] G. Biondini, G. Kov$\breve{a}$aci$\breve{c}$, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | Zbl

[39] M. Pichler, G. Biondini, “On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles”, IMA J. Appl. Math., 82:1 (2017), 131–151 | DOI | Zbl

[40] G. Biondini, D. K. Kraus, “Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions”, SIAM J. Math. Anal., 47:1 (2015), 706–757 | DOI | Zbl

[41] B. Prinari, M. J. Ablowitz, G. Biondini, “Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions”, J. Math. Phys., 47:6 (2006), 063508, 33 pp. | DOI | Zbl

[42] G. Biondini, D. K. Kraus, B. Prinari, “The three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions”, Commun. Math. Phys., 348:2 (2016), 475–533, arXiv: 1511.02885 | DOI | Zbl

[43] G. Zhang, Z. Yan, “The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: Inverse scattering transforms and $N$-double-pole solutions”, J. Nonlinear Sci., 30:6 (2020), 3089–3127 | DOI | Zbl

[44] Z. Zhang, E. Fan, “Inverse scattering transform for the Gerdjikov-Ivanov equation with nonzero boundary conditions”, Z. Angew. Math. Phys., 71:5 (2020), 149, 28 pp.

[45] Y. Yang, E. Fan, Riemann–Hilbert approach to the modified nonlinear Schrödinger equation with non-vanishing asymptotic boundary conditions, arXiv: 1910.07720

[46] L.-L. Wen, E.-G. Fan, “The Riemann–Hilbert approach to focusing Kundu–Eckhaus equation with non-zero boundary conditions”, Modern Phys. Lett. B, 34:30 (2020), 2050332, 20 pp., arXiv: 1910.08921 | DOI

[47] N. Guo, J. Xu, Inverse scattering transform for the Kundu–Eckhaus equation with nonzero boundary conditions, arXiv: 1912.11424

[48] N. Guo, J. Xu, L. Wen, E. Fan, “Rogue wave and multi-pole solutions for the focusing Kundu–Eckhaus equation with nonzero background via Riemann–Hilbert problem method”, Nonlinear Dyn., 103:2 (2021), 1851–1868 | DOI