The initial-boundary value for the combined Schrödinger and Gerdjikov–Ivanov equation on the half-line via the Riemann–Hilbert approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 258-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Fokas method is used to study the initial-boundary value problem for the combined Schrödinger and Gerdjikov–Ivanov equation on the half-line. Assuming that the solution $u(x,t)$ exists, it can be represented by the unique solution of a matrix Riemann–Hilbert problem formulated on the plane of the complex spectral parameter $\xi$. The jump matrices are given on the basis of the spectral functions, which are not independent, but are related by a global relation.
Keywords: Riemann–Hilbert problem; combined nonlinear Schrödinger and Gerdjikov–Ivanov equation; initial-boundary value problem; unified transform method.
@article{TMF_2021_209_2_a3,
     author = {Yan Li and Ling Zhang and Beibei Hu and Ruiqi Wang},
     title = {The~initial-boundary value for the~combined {Schr\"odinger} and {Gerdjikov{\textendash}Ivanov} equation on the~half-line via {the~Riemann{\textendash}Hilbert} approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {258--273},
     year = {2021},
     volume = {209},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a3/}
}
TY  - JOUR
AU  - Yan Li
AU  - Ling Zhang
AU  - Beibei Hu
AU  - Ruiqi Wang
TI  - The initial-boundary value for the combined Schrödinger and Gerdjikov–Ivanov equation on the half-line via the Riemann–Hilbert approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 258
EP  - 273
VL  - 209
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a3/
LA  - ru
ID  - TMF_2021_209_2_a3
ER  - 
%0 Journal Article
%A Yan Li
%A Ling Zhang
%A Beibei Hu
%A Ruiqi Wang
%T The initial-boundary value for the combined Schrödinger and Gerdjikov–Ivanov equation on the half-line via the Riemann–Hilbert approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 258-273
%V 209
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a3/
%G ru
%F TMF_2021_209_2_a3
Yan Li; Ling Zhang; Beibei Hu; Ruiqi Wang. The initial-boundary value for the combined Schrödinger and Gerdjikov–Ivanov equation on the half-line via the Riemann–Hilbert approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 258-273. http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a3/

[1] D. Hilbert, “Mathematische Probleme”, Gött. Nachr., 1900 (1900), 253–297 | Zbl

[2] J. Lenells, A. S. Fokas, “On a novel integrable generalization of the nonlinear Schrödinger equation”, Nonlinearity, 22:1 (2008), 11–27 | DOI | MR

[3] J. Lenells, A. S. Fokas, “An integrable generalization of the nonlinear Schrödinger equation on the half-line and solitons”, Inverse Probl., 25:11 (2009), 115006, 32 pp. | DOI | MR

[4] A. S. Fokas, J. Lenells, B. Pelloni, “Boundary value problems for the elliptic sine-Gordon equation in a semi-strip”, J. Nonlinear Sci., 23:2 (2013), 241–282 | DOI | MR

[5] A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Regional Conference Series in Applied Mathematics, 78, SIAM, Philadelphia, PA, 2008 | DOI | MR

[6] J. Lenells, “Nonlinear Fourier transforms and the mKdV equation in the quarter plane”, Stud. Appl. Math., 136:1 (2016), 3–63 | DOI | MR

[7] V. S. Gerdzhikov, M. I. Ivanov, “A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures”, Bulgar. J. Phys., 10:2 (1983), 130–143 | MR

[8] H. Nie, J. Zhu, X. Geng, “Trace formula and new form of $N$-soliton to the Gerdjikov–Ivanov equation”, Anal. Math. Phys., 8:3 (2018), 415–426 | DOI | MR

[9] Y. Halis, “Exact solutions of the Gerdjikov–Ivanov equation using Darboux transformations”, J. Nonlinear Math. Phys., 22:1 (2014), 32–46 | DOI

[10] X. Lü, W.-X. Ma, J. Yu, F. Lin, C. M. Khalique, “Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model”, Nonlinear Dyn., 82:3 (2015), 1211–1220 | DOI | MR

[11] M. J. Ablowitz, A. S. Fokas, Complex Variables: Introduction and Applications, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR | Zbl

[12] A. S. Fokas, “A unified transform method for solving linear and certain nonlinear PDEs”, Proc. Roy Soc. London Ser. A, 453:1962 (1997), 1411–1443 | DOI | MR

[13] A. S. Fokas, “Integrable nonlinear evolution equations on the half-line”, Commun. Math. Phys., 230:1 (2002), 1–39 | DOI | MR

[14] A. S. Fokas, A. R. Its, L.-Y. Sung, “The nonlinear Schrödinger equation on the half-line”, Nonlinearity, 18:4 (2005), 1771–1822 | DOI | MR

[15] J. Lenells, A. S. Fokas, “Boundary-value problems for the stationary axisymmetric Einstein equations: a rotating disc”, Nonlinearity, 24:1 (2011), 177–206 | DOI | MR

[16] A. S. Fokas, “An initial-boundary value problem for the nonlinear Schrödinger equation”, Phys. D, 35:1–2 (1989), 167–185 | DOI | MR

[17] X. G. Geng, H. Liu, J. Y. Zhu, “Initial-boundary value problems for the coupled nonlinear Schrödinger equation on the half-line”, Stud. Appl. Math., 135:3 (2015), 310–346 | DOI | MR

[18] J. Xu, “Initial-boundary value problem for the two-component nonlinear Schrödinger equation on the half-line”, J. Nonlinear Math. Phys., 23:2 (2016), 167–189 | DOI | MR

[19] B. B. Hu, T. C. Xia, N. Zhang, J. B. Wang, “Initial-boundary value problems for the coupled higher-order nonlinear Schrödinger equations on the half-line”, Internat. J. Nonlinear Sci. Numer. Simul., 19:1 (2018), 83–92 | DOI | MR

[20] B. B. Hu, T. C. Xia, “A Fokas approach to the coupled modified nonlinear Schrödinger equation on the half-line”, Math. Methods Appl. Sci., 41:13 (2018), 5112–5123 | DOI | MR

[21] J. Holmer, “The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line”, Differ. Integral Equ., 18:6 (2005), 647–668 | MR

[22] J. Lenells, “The derivative nonlinear Schrödinger equation on the half-line”, Phys. D, 237:23 (2008), 3008–3019 | DOI | MR

[23] X.-J. Chen, J. Yang, W. K. Lam, “$N$-soliton solution for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions”, J. Phys. A: Math. Gen., 39:13 (2006), 3263–3274, arXiv: nlin/0602044 | DOI | MR

[24] L. Xiao, S. Gideon, S. Catherine, “Focusing singularity in a derivative nonlinear Schrödinger equation”, Phys. D, 262 (2013), 48–58 | DOI | MR

[25] M. Hayashi, T. Ozawa, “Well-posedness for a generalized derivative nonlinear Schrödinger equation”, J. Differ. Equ., 261:10 (2016), 5424–5445, arXiv: 1601.04167 | DOI | MR

[26] J. Xu, E. G. Fan, “A Riemann–Hilbert approach to the initial-boundary problem for derivative nonlinear Schrödinger equation”, Acta Math. Sci., 34:4 (2014), 973–994 | DOI | MR

[27] E. Fan, “Bi-Hamiltonian structure and Liouville integrability for a Gerdjikov–Ivanov equation hierarchy”, Chinese Phys. Lett., 18:1 (2001), 1–3 | DOI

[28] X.-Z. Li, X.-Y. Li, L.-Y. Zhao, J.-L. Zhang, “Exact solutions of Gerdjikov–Ivanov equation”, Acta. Phys. Sin. (Chinese), 57:4 (2008), 2031–2034 | DOI | MR

[29] S. Xu, J. He, “The rogue wave and breather solution of the Gerdjikov–Ivanov equation”, J. Math. Phys., 53:6 (2012), 063507, 17 pp. | DOI | MR

[30] H. H. Dai, E. G. Fan, “Variable separation and algebro-geometric solutions of the Gerdjikov–Ivanov equation”, Chaos Solitons Fractals, 22:1 (2004), 93–101 | DOI | MR

[31] B. He, Q. Meng, “Bifurcations and new exact travelling wave solutions for the Gerdjikov–Ivanov equation”, Commun. Nonlinear. Sci. Numer. Simul., 15:7 (2010), 1783–1790 | DOI | MR

[32] L. J. Guo, Y. S. Zhang, S. W. Xu, Z. W. Wu, J. S. He, “The higher order rogue wave solutions of the Gerdjikov–Ivanov equation”, Phys. Scr., 89:3 (2014), 035501, 11 pp. | DOI

[33] H. Nie, L. P. Lu, X. G. Geng, “Riemann–Hilbert approach for the combined nonlinear Schrodinger and Gerdjikov–Ivanov equation and its $N$-soliton solutions”, Modern Phys. Lett. B, 32:7 (2018), 1850088, 9 pp. | DOI | MR

[34] A. S. Fokas, “Two-dimensional linear partial differential equations in a convex polygon”, Proc. Roy Soc. London Ser. A, 457:2006 (2001), 371–393 | DOI