On the~group-theoretical approach to relativistic wave equations for arbitrary spin
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 224-242
Voir la notice de l'article provenant de la source Math-Net.Ru
Formulating a relativistic equation for particles with arbitrary spin remains an open challenge in theoretical physics. In this study, the main algebraic approaches used to generalize the Dirac and Kemmer–Duffin equations for arbitrary-spin particles are investigated. It is proved that an irreducible relativistic equation formulated using spin matrices satisfying the commutation relations of the anti-de Sitter group leads to inconsistent results, mainly as a consequence of the violation of unitarity and the appearance of a mass spectrum that does not reflect the physical reality of elementary particles. However, the introduction of subsidiary conditions resolves the problem of unitarity and restores the physical meaning of the mass spectrum. The equations obtained by these approaches are solved and the physical nature of the solutions is discussed.
Keywords:
relativistic wave equation, higher spin, anti-de Sitter group, irreducible representations of Lorentz group.
@article{TMF_2021_209_2_a1,
author = {L. Nanni},
title = {On the~group-theoretical approach to relativistic wave equations for arbitrary spin},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {224--242},
publisher = {mathdoc},
volume = {209},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a1/}
}
TY - JOUR AU - L. Nanni TI - On the~group-theoretical approach to relativistic wave equations for arbitrary spin JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 224 EP - 242 VL - 209 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a1/ LA - ru ID - TMF_2021_209_2_a1 ER -
L. Nanni. On the~group-theoretical approach to relativistic wave equations for arbitrary spin. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 224-242. http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a1/