@article{TMF_2021_209_2_a1,
author = {L. Nanni},
title = {On the~group-theoretical approach to relativistic wave equations for arbitrary spin},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {224--242},
year = {2021},
volume = {209},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a1/}
}
L. Nanni. On the group-theoretical approach to relativistic wave equations for arbitrary spin. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 224-242. http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a1/
[1] W. Gordon, “Der Comptoneffekt nach der Schrödingerschen Theorie”, Z. Phys., 40:1–2 (1926), 117–133 | DOI
[2] P. A. M. Dirac, “The quantum theory of the electron”, Proc. Roy. Soc. London Ser. A, 117:778 (1928), 610–624 | DOI
[3] C. D. Anderson, “The positive electron”, Phys. Rev., 43:6 (1933), 491–498 | DOI
[4] J. Chadwick, “The existence of a neutron”, Proc. Roy. Soc. London Ser. A, 136:830 (1932), 692–708 | DOI
[5] E. Majorana, “Teoria relativistica di particelle con momentum internisico arbitrario”, Nuovo Cimento, 9:10 (1932), 335–344 | DOI
[6] E. Majorana, “Teoria simmetrica dell'elettrone e del positrone”, Nuovo Cimento, 14:4 (1937), 171–184 | DOI
[7] J. Iliopoulos, The Origin of Mass: Elementary Particles and Fundamental Symmetries, Oxford Univ. Press, Oxford, 2017 | Zbl
[8] F. Benatti, Dynamics, Information and Complexity in Quantum Systems, Theoretical and Mathematical Physics, Springer, Dordrecht, 2009 | DOI | MR
[9] Y.-P. Huo, C.-K. Ng, “Some algebraic structures related to a quantum system with infinite degrees of freedom”, Rep. Math. Phys., 67:1 (2011), 97–107 | DOI | MR
[10] G. Esposito, G. Marmo, G. Miele, G. Sudarshan, Advanced Concepts in Quantum Mechanics, Cambridge Univ. Press, Cambridge, 2015 | MR
[11] E. Wigner, “On unitary representations of the inhomogeneous Lorentz group”, Ann. Math. (2), 40:1 (1939), 149–204 | DOI | MR
[12] S. Esposito, The Physics of Ettore Majorana. Theoretical, Mathematical, and Phenomenological, Cambridge Univ. Press, Cambridge, 2015 | DOI | MR
[13] P. A. M. Dirac, “Relativistic wave equations”, Proc. Roy. Soc. London Ser. A, 155:886 (1936), 447–459 | DOI
[14] H. J. Bhabha, “Relativistic wave equations for elementary particles”, Rev. Modern Phys., 17:2–3 (1945), 200–216 | DOI | MR
[15] N. Kemmer, “The particle aspect of meson theory”, Proc. Roy. Soc. London Ser. A, 173:952 (1939), 91–116 | DOI | MR
[16] R. J. Duffin, “On the characteristic matrices of covariant systems”, Phys. Rev., 54:12 (1938), 1114–1114 | DOI
[17] W. Rarita, J. Schwinger, “On a theory of particles with half-integral spin”, Phys. Rev., 60:1 (1941), 61 | DOI
[18] V. Bargmann, E. P. Wigner, “Group theoretical discussion of relativistic wave equations”, Proc. Nat. Acad. Sci. USA, 34:5 (1948), 211–223 | DOI | MR
[19] R.-K. Loide, I. Ots, R. Saar, “Bhabha relativistic wave equations”, J. Phys. A: Math. Gen., 30:11 (1997), 4005–4017 | DOI | MR
[20] R. Aldrovandi, J. G. Pereira, An Introduction to Geometrical Physics, World Sci., Singapore, 1995 | DOI | MR
[21] R. Aldrovandi, J. P. Beltrán Almeida, J. G. Pereira, “de Sitter special relativity”, Class. Quantum Grav., 24:6 (2007), 1385–1404, arXiv: gr-qc/0606122 | DOI
[22] J. K. Lubański, “Sur la théorie des particules élémentaires de spin quelconque. I”, Physica, 9:3 (1942), 310–324 | DOI | MR
[23] W. Fulton, Young Tableaux, London Mathematical Society Student Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | MR
[24] D. M. Fradkin, “Comments on a paper by Majorana concerning elementary particles”, Amer. J. Phys., 34:4 (1966), 314–318 | DOI
[25] R. Casalbuoni, “Majorana and the infinite component wave equations”, PoS (EMC2006), 37 (2006), 004, 15 pp., arXiv: hep-th/0610252
[26] E. Joung, J. Mourad, R. Parentani, “Group theoretical approach to quantum fields in de Sitter space. I The principal series”, JHEP, 08 (2006), 082, 36 pp. | DOI | MR
[27] B. Supriadi, T. Prihandono, V. Rizqiyah, Z. R. Ridlo, N. Faroh, S. Andika, “Angular momentum operator commutator against position and Hamiltonian of a free particle”, J. Phys.: Conf. Series, 1211 (2019), 012051, 8 pp. | DOI
[28] I. M. Gelfand, A. M. Yaglom, “Obschie relyativistski invariantnye uravneniya i beskonechnomernye predstavleniya gruppy Lorentsa”, ZhETF, 18:8 (1948), 703–733 | MR
[29] V. L. Ginzburg, “On relativistic wave equations with a mass spectrum”, Acta Phys. Polon., 15:1 (1956), 163–175 | MR
[30] I. M. Gelfand, R A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, ikh primeneniya, Nauka, M., 1958 | MR
[31] M. A. Naimark, Lineinye predstavleniya gruppy Lorentsa, URSS, M., 2019 | MR | MR | Zbl
[32] R. G. Cooke, Infinite Matrices and Sequence Spaces, Dover, New York, 2014 | MR
[33] B. C. Chanyal, S. Karnatak, “A comparative study of quaternionic rotational Dirac equation and its interpretation”, Internat. J. Geom. Meth. Modern Phys., 17:2 (2020), 2050018, 21 pp., arXiv: 1909.02446 | DOI | MR
[34] E. H. Roffman, “Unitary and non-unitary representations of the complex inhomogeneous Lorentz group”, Commun. Math. Phys., 4:4 (1967), 237–257 | DOI | MR
[35] A. O. Barut, I. H. Duru, “Introduction of internal coordinates into the infinite-component Majorana equation”, Proc. Roy. Soc. London Ser. A, 333:1593 (1973), 217–224 | DOI | MR
[36] R. M. Mir-Kasimov, I. P. Volobujev, “Complex quaternions and spinor representations of de Sitter groups $SO(4,1)$ and $SO(3,2)$”, Acta Phys. Polon. B, 9:2 (1978), 91–105 | MR
[37] C. D. Greenman, “The generic spacing distribution of the two-dimensional harmonic oscillator”, J. Phys. A: Math. Gen., 29:14 (1996), 4065–4081 | DOI | MR
[38] V. L. Ginzburg, “Kakie problemy fiziki i astrofiziki predstavlyayutsya seichas osobenno vazhnymi i interesnymi (tridtsat let spustya, prichem uzhe na poroge KhKhI veka)?”, UFN, 169:4 (1999), 419–441 | DOI | DOI
[39] M. Gell-Mann, “Symmetries of baryons and mesons”, Phys. Rev., 125:3 (1962), 1067–1084 | DOI | MR
[40] V. V. Varlamov, “Spinor structure and internal symmetries”, Internat. J. Theor. Phys., 54:10 (2015), 3533–3576 | DOI | MR
[41] V. V. Varlamov, “Spinor structure and matter spectrum”, Internat. J. Theor. Phys., 55:11 (2015), 5008–5045 | DOI
[42] B. G. Sidharth, A formula for the mass spectrum of baryons and mesons, arXiv: physics/0306010
[43] C. Amsler, The Quark Structure of Hadrons. An Introduction to the Phenomenology and Spectroscopy, Lecture Notes in Physics, 949, Springer, Cham, 2018 | DOI
[44] I. L. Buchbinder, S. J. Gates, K. Koutrolikos, “Conserved higher spin supercurrents for arbitrary spin massless supermultiplets and higher spin superfield cubic interactions”, JHEP, 08 (2018), 055, 11 pp. | DOI | MR