Mirror map for Fermat polynomials with a~nonabelian group of
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 205-223

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Landau–Ginzburg orbifolds $(f,G)$ with $f=x_1^n+\cdots+x_N^n$ and $G=S\ltimes G^d$, where $S\subseteq S_N$ and $G^d$ is either the maximal group of scalar symmetries of $f$ or the intersection of the maximal diagonal symmetries of $f$ with $SL_N(\mathbb{C})$. We construct a mirror map between the corresponding phase spaces and prove that it is an isomorphism restricted to a certain subspace of the phase space when $n=N$ is a prime number. When $S$ satisfies the parity condition of Ebeling–Gusein-Zade, this subspace coincides with the full space. We also show that two phase spaces are isomorphic for $n=N=5$.
Keywords: mirror symmetry, nonabelian symmetry group, singularity theory.
@article{TMF_2021_209_2_a0,
     author = {A. A. Basalaev and A. A. Ionov},
     title = {Mirror map for {Fermat} polynomials with a~nonabelian group of},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {205--223},
     publisher = {mathdoc},
     volume = {209},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a0/}
}
TY  - JOUR
AU  - A. A. Basalaev
AU  - A. A. Ionov
TI  - Mirror map for Fermat polynomials with a~nonabelian group of
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 205
EP  - 223
VL  - 209
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a0/
LA  - ru
ID  - TMF_2021_209_2_a0
ER  - 
%0 Journal Article
%A A. A. Basalaev
%A A. A. Ionov
%T Mirror map for Fermat polynomials with a~nonabelian group of
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 205-223
%V 209
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a0/
%G ru
%F TMF_2021_209_2_a0
A. A. Basalaev; A. A. Ionov. Mirror map for Fermat polynomials with a~nonabelian group of. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 2, pp. 205-223. http://geodesic.mathdoc.fr/item/TMF_2021_209_2_a0/