On a~free boundary problem for the~relaxation transfer equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 184-202

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the free boundary problem with no initial conditions for a third-order relaxation transfer equation. First, we reduce the problem to a second-order equation and prove the uniqueness theorem. The solution of this problem is constructed as a limit of solutions of corresponding problems that are first reduced to a Stefan-type problem with initial conditions. Free boundary behavior is explored.
Keywords: relaxation, transfer, free boundary, a priori estimate, existence and uniqueness of solution.
@article{TMF_2021_209_1_a8,
     author = {J. O. Takhirov and M. T. Umirkhonov},
     title = {On a~free boundary problem for the~relaxation transfer equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {184--202},
     publisher = {mathdoc},
     volume = {209},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a8/}
}
TY  - JOUR
AU  - J. O. Takhirov
AU  - M. T. Umirkhonov
TI  - On a~free boundary problem for the~relaxation transfer equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 184
EP  - 202
VL  - 209
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a8/
LA  - ru
ID  - TMF_2021_209_1_a8
ER  - 
%0 Journal Article
%A J. O. Takhirov
%A M. T. Umirkhonov
%T On a~free boundary problem for the~relaxation transfer equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 184-202
%V 209
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a8/
%G ru
%F TMF_2021_209_1_a8
J. O. Takhirov; M. T. Umirkhonov. On a~free boundary problem for the~relaxation transfer equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 184-202. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a8/