@article{TMF_2021_209_1_a8,
author = {J. O. Takhirov and M. T. Umirkhonov},
title = {On a~free boundary problem for the~relaxation transfer equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {184--202},
year = {2021},
volume = {209},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a8/}
}
J. O. Takhirov; M. T. Umirkhonov. On a free boundary problem for the relaxation transfer equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 184-202. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a8/
[1] T. Fülöp, R. Kovács, Á. Lovas, Á. Rieth, T. Fodor, M. Szücs, P. Ván, G. Gróf, “Emergency of non-Fourier hierarchies”, Entropy, 20:11 (2018), 832, 13 pp., arXiv: 1808.06858 | DOI
[2] I. V. Kudinov, Matematicheskoe modelirovanie lokalno-neravnovesnykh protsessov perenosa teploty, massy, impulsa s uchetom relaksatsionnykh yavlenii, Diss. ... dokt. tekhn. nauk, Sam. gos. tekhn. un-t, Samara, 2017
[3] R. A. Guyer, J. A. Krumhansl, “Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals”, Phys. Rev., 148:2 (1966), 778–788 | DOI
[4] P. Ván, “Weakly nonlocal irreversible thermodynamics – the Guyer–Krumhansl and the Cahn–Hilliard equations”, Phys. Lett. A, 290:1–2 (2001), 88–92, arXiv: cond-mat/010656 | DOI
[5] K. V. Zhukovsky, “Exact solution of Guyer–Krumhansl type heat equation by operational method”, Internat. J. Heat Mass Transf., 96 (2016), 132–144 | DOI
[6] R. Kovács, “Analytic solution of Guyer–Krumhansl equation for laser flash experiments”, Internat. J. Heat Mass Transf., 127, Part A (2018), 631–636 | DOI
[7] D. Y. Tzou, Macro- to Micro-Scale Heat Transfer: The Lagging Behavior, John Wiley and Sons, New York, 2015 | DOI
[8] P. Rogolino, R. Kovács, P. Ván, V. A. Cimmelli, “Generalized heat-transport equations: parabolic and hyperbolic models”, Contin. Mech. Thermodyn., 30:6 (2018), 1245–1258 | DOI | MR
[9] R. Kovács, P. Ván, “Thermodynamical consistency of the Dual Phase Lag heat conduction equation”, Contin. Mech. Thermodyn., 30:6 (2017), 1223–1230 | DOI | MR
[10] F. Mollica, L. Preziosi, K. R. Rajagopal (eds.), Modeling of Biological Materials, Burkhäuser, Boston, 2007 | DOI
[11] A. Friedman, “Free boundary problems in biology”, Phil. Trans. Roy. Soc. A, 373:2050 (2015), 20140368, 16 pp. | DOI | MR
[12] P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels (eds.), Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, Springer INdAM Series, 22, Springer, Berlin, 2017 | DOI
[13] I. N. Figueiredo, L. Santos, Free Boundary Problems: Theory and Applications, International Series of Numerical Mathematics, 154, Birkhäuser, Basel, 2007 | DOI
[14] I. I. Danilyuk, “O zadache Stefana”, UMN, 40:5(245) (1985), 133–185 | DOI | MR | Zbl
[15] B. V. Bazaliy, A. Friedman, “A free boundary problem for an elliptic-parabolic system: application to a model of tumor growth”, Commun. Partial Differ. Equ., 28:3–4 (2003), 517–560 | DOI | MR
[16] L. I. Rubinshtein, Problema Stefana, Zvaigzne, Riga, 1967 | DOI | MR
[17] A. M. Meirmanov, Zadacha Stefana, Nauka, Novosibirsk, 1986 | DOI | MR
[18] A. Friedman, Partial Differential Equation of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964 | MR | Zbl
[19] V. A. Florin, “Uplotnenie zemlyanoi sredy i filtratsiya pri peremennoi poristosti s uchetom vliyaniya svyazannoi vody”, Izv. AN SSSR, OTN, 11 (1951), 1625–1649
[20] T. D. Venttsel, “Ob odnoi zadache so svobodnoi granitsei dlya uravneniya teploprovodnosti”, Dokl. AN SSSR, 131:5 (1960), 1000–1003 | MR | Zbl
[21] Nguen Din Chi, “Ob odnoi zadache so svobodnoi granitsei dlya parabolicheskogo uravneniya”, Vest. Mosk. un-ta. Ser. 1. Matem., mekh., 1966, no. 2, 40–54
[22] G. I. Bizhanova, “Mnogomernye zadachi Stefana i Florina v vesovykh gelderovskikh prostranstvakh funktsii”, Diss. ... dokt. fiz.-matem. nauk, In-t teoret. i prikl. matem. NAN RK, Almaty, 1994
[23] G. I. Bizhanova, “O klassicheskoi razreshimosti odnomernykh zadach so svobodnoi granitsei Florina, Masketa–Verigina i Stefana”, Zap. nauchn. sem. POMI, 243 (1997), 30–60 | DOI | MR | Zbl
[24] L. Fusi, A. Farina, “Pressure-driven flow of a rate type fluid with stress threshold in an infinite channel”, Internat. J. Non-Linear Mech., 45:8 (2011), 991–1000 | DOI
[25] A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths”, Phys. Rev. Lett., 107:9 (2011), 095901, 4 pp. | DOI
[26] M. Maldovan, “Transition between ballistic and diffusive heat transport regimes in silicon materials”, Appl. Phys. Lett., 101:11 (2012), 113110, 5 pp. | DOI
[27] S. Both, B. Czél, T. Fülöp, G. Gróf, Á. Gyenis, R. Kovács, P. Ván, J. Verhás, “Deviation from the Fourier law in room-temperature heat pulse experiments”, J. Non-Equilib. Thermodyn., 41:1 (2016), 41–48, arXiv: 1506.05764 | DOI
[28] K. Mitra, S. Kumar, A. Vedevarz, M. K. Moallemi, “Experimental evidence of hyperbolic heat conduction in process meat”, J. Heat Transfer, 117:3 (1995), 568–573 | DOI
[29] G. I. Barenblatt, A. Yu. Ishlinskii, “Ob udare vzyako-plasticheskogo sterzhnya o zhestkuyu pregradu”, PMM, 26:3 (1962), 497–502
[30] S. N. Kruzhkov, “O nekotorykh zadachakh s neizvestnoi granitsei dlya uravneniya teploprovodnosti”, PMM, 31:6 (1967), 1010–1020
[31] V. A. Solonnikov, A. Fazano, “Ob odnomernoi parabolicheskoi zadache, voznikayuschei pri izuchenii nekotorykh zadach so svobodnymi granitsami”, Zap. nauchn. sem. POMI, 269 (2000), 322–338 | DOI | MR | Zbl
[32] J. O. Takhirov, R. N. Turaev, “The free boundary problem without initial condition”, Ukr. matem. vicnik, 9:2 (2012), 259–277 | DOI | MR
[33] S. N. Kruzhkov, “Nelineinye parabolicheskie uravneniya s dvumya nezavisimymi peremennami”, Trudy MMO, 16 (1967), 329–346 | MR | Zbl
[34] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[35] A. Fasano, M. Primicerio, “General free-boundary problems for the heat equation”, J. Math. Anal. Appl., 57:3 (1977), 694–723 | DOI | MR