On a~free boundary problem for the~relaxation transfer equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 184-202
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the free boundary problem with no initial conditions for a third-order relaxation transfer equation. First, we reduce the problem to a second-order equation and prove the uniqueness theorem. The solution of this problem is constructed as a limit of solutions of corresponding problems that are first reduced to a Stefan-type problem with initial conditions. Free boundary behavior is explored.
Keywords:
relaxation, transfer, free boundary, a priori estimate, existence and uniqueness of solution.
@article{TMF_2021_209_1_a8,
author = {J. O. Takhirov and M. T. Umirkhonov},
title = {On a~free boundary problem for the~relaxation transfer equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {184--202},
publisher = {mathdoc},
volume = {209},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a8/}
}
TY - JOUR AU - J. O. Takhirov AU - M. T. Umirkhonov TI - On a~free boundary problem for the~relaxation transfer equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 184 EP - 202 VL - 209 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a8/ LA - ru ID - TMF_2021_209_1_a8 ER -
J. O. Takhirov; M. T. Umirkhonov. On a~free boundary problem for the~relaxation transfer equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 184-202. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a8/