@article{TMF_2021_209_1_a7,
author = {Yu. G. Ignat'ev and D. Yu. Ignatyev},
title = {Cosmological models based on a~statistical system of scalar charged degenerate fermions and an~asymmetric {Higgs} scalar doublet},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {142--183},
year = {2021},
volume = {209},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a7/}
}
TY - JOUR AU - Yu. G. Ignat'ev AU - D. Yu. Ignatyev TI - Cosmological models based on a statistical system of scalar charged degenerate fermions and an asymmetric Higgs scalar doublet JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 142 EP - 183 VL - 209 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a7/ LA - ru ID - TMF_2021_209_1_a7 ER -
%0 Journal Article %A Yu. G. Ignat'ev %A D. Yu. Ignatyev %T Cosmological models based on a statistical system of scalar charged degenerate fermions and an asymmetric Higgs scalar doublet %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 142-183 %V 209 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a7/ %G ru %F TMF_2021_209_1_a7
Yu. G. Ignat'ev; D. Yu. Ignatyev. Cosmological models based on a statistical system of scalar charged degenerate fermions and an asymmetric Higgs scalar doublet. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 142-183. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a7/
[1] Yu. G. Ignatev, “Zakony sokhraneniya i termodinamicheskoe ravnovesie v obscherelyativistskoi kineticheskoi teorii neuprugo vzaimodeistvuyuschikh chastits”, Izv. vuzov. Fizika, 26:12 (1983), 9–14 | DOI
[2] Yu. G. Ignatev, R. R. Kuzeev, “Termodinamicheskoe ravnovesie samogravitiruyuschei plazmy so skalyarnym vzaimodeistviem”, Ukr. fiz. zhurn., 29:7 (1984), 1021–1025
[3] Yu. G. Ignatyev, R. F. Miftakhov, “Statistical systems of particles with scalar interaction in cosmology”, Grav. Cosmol., 12:2–3 (2006), 179–185
[4] K. A. Bronnikov, J. C. Fabris, “Regular phantom black holes”, Phys. Rev. Lett., 96:25 (2006), 251101, 4 pp. | DOI | MR
[5] S. V. Bolokhov, K. A. Bronnikov, M. V. Skvortsova, “Magnetic black universes and wormholes with a phantom scalar”, Class. Quantum Grav., 29:24 (2012), 245006, 13 pp. | DOI | MR
[6] J. M. Cline, S. Jeon, G. D. Moore, “The phantom menaced: constraints on low-energy effective ghosts”, Phys. Rev. D, 70:4 (2004), 043543, 4 pp., arXiv: hep-ph/0311312 | DOI
[7] R. Kallosh, J. U. Kang, A. Linde, V. Mukhanov, “The new ekpyrotic ghost”, J. Cosmol. Astropart. Phys., 2008:4 (2008), 018, 23 pp. | DOI | MR
[8] S. Nojiri, E. N. Saridakis, “Phantom without ghost”, Astrophys. Space Sci., 347:1 (2013), 221–226 | DOI
[9] F. Sbisa, “Classical and quantum ghosts”, Eur. J. Phys., 36:1 (2014), 015009, 15 pp. | DOI
[10] S. Yu. Vernov, “Tochnye resheniya nelokalnykh nelineinykh polevykh uravnenii v kosmologii”, TMF, 166:3 (2011), 452–464, arXiv: 1005.5007 | DOI | DOI | MR
[11] S. M. Carroll, M. Hoffman, M. Trodden, “Can the dark energy equation-of-state parameter $w$ be less than $-1$?”, Phys. Rev. D, 68:2 (2003), 023509, 11 pp., arXiv: astro-ph/0301273 | DOI
[12] M. G. Richarte, G. M. Kremer, “Cosmological perturbations in transient phantom inflation scenarios”, Eur. Phys. J. C, 77:1 (2016), 51, 11 pp., arXiv: 1612.03822 | DOI
[13] A. Tripathi, A. Sangwan, H. K. Jassal, “Dark energy equation of state parameter and its evolution at low redshift”, J. Cosmol. Astropart. Phys., 2017, no. 6, 012, 16 pp. | DOI | MR
[14] Y. Ma, J. Zhang, S. Cao, X. Zheng, T. Xu, J. Qi, “The generalized cosmic equation of state: a revised study with cosmological standard rulers”, Eur. Phys. J. C, 77:12 (2017), 891, 9 pp. | DOI
[15] J. Meyers, G. Aldering, K. Barbary et al., “The Hubble space telescope cluster supernova survey. III. Correlated properties of type Ia Supernovae and their hosts at $0.91.46$”, Astrophys. J., 750:1 (2012), 1, 23 pp. | DOI
[16] R. Terlevich, E. Terlevich, J. Melnick, R. Chávez, M. Plionis, F. Bresolin, S. Basilakos, “On the road to precision cosmology with high-redshift Hii galaxies”, Monthly Not. Roy. Astron. Soc., 451:3 (2015), 3001–3010, arXiv: 1505.04376 | DOI
[17] R. Chávez, M. Plionis, S. Basilakos, R. Terlevich, E. Terlevich, J. Melnick, F. Bresolin, A. L. González-Morán, “Constraining the dark energy equation of state with H II galaxies”, Monthly Not. Roy. Astron. Soc., 462:3 (2016), 2431–2439 | DOI
[18] I. Ya. Aref'eva, A. S. Koshelev, S. Yu. Vernov, “Crossing the $w=-1$ barrier in the D3-brane dark energy model”, Phys. Rev. D, 72:6 (2005), 064017, arXiv: astro-ph/0507067 | DOI
[19] I. Ya. Arefeva, S. Yu. Vernov, A. S. Kosheleva, “Tochnoe reshenie v strunnoi kosmologicheskoi modeli”, TMF, 148:1 (2006), 23–41, arXiv: astro-ph/0412619 | DOI | DOI | MR | Zbl
[20] S. Yu. Vernov, “Postroenie tochnykh reshenii v dvukhpolevykh kosmologicheskikh modelyakh”, TMF, 155:1 (2008), 47–61 | DOI | DOI | MR | Zbl
[21] R. R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state”, Phys. Lett. B, 545:1–2 (2002), 23–29, arXiv: astro-ph/9908168 | DOI
[22] Yu. G. Ignat'ev, “Qualitative and numerical analysis of a cosmological modely based on a classical massive scalar field”, Grav. Cosmol., 23:2 (2017), 131–141 | DOI | MR
[23] Yu. G. Ignatev, “Kachestvennyi i chislennyi analiz kosmologicheskoi modeli s fantomnym skalyarnym polem”, Izv. vuzov. Fizika, 59:12 (2017), 83–87 | DOI
[24] Yu. G. Ignat'ev, A. A. Agathonov, “Qualitative and numerical analysis of a cosmological model based on a phantom scalar field with self-interaction”, Grav. Cosmol., 23:3 (2017), 230–235 | DOI | MR
[25] Yu. G. Ignatev, I. A. Kokh, “Kachestvennyi i chislennyi analiz kosmologicheskoi modeli, osnovannoi na asimmetrichnom skalyarnom dublete s minimalnymi svyazyami. I. Kachestvennyi analiz modeli”, Izv. vuzov. Fizika, 61:6 (2018), 72–81 | DOI
[26] Yu. G. Ignatev, I. A. Kokh, “Kachestvennyi i chislennyi analiz kosmologicheskoi modeli, osnovannoi na asimmetrichnom skalyarnom dublete s minimalnymi svyazyami. II. Chislennoe modelirovanie fazovykh traektorii”, Izv. vuzov. Fizika, 61:9 (2018), 38–42 | DOI
[27] Yu. G. Ignatev, I. A. Kokh, “Kachestvennyi i chislennyi analiz kosmologicheskoi modeli, osnovannoi na asimmetrichnom skalyarnom dublete s minimalnymi svyazyami. III. Faktor neodnosvyaznosti i kharakter osobykh tochek”, Izv. vuzov. Fizika, 62:2 (2018), 54–61 | DOI
[28] Yu. G. Ignat'ev, I. A. Kokh, “Peculiarities of cosmological models based on a nonlinear asymmetric scalar doublet with minimal interaction. I. Qualitative analysis”, Grav. Cosmol., 25:1 (2019), 24–36, arXiv: 1908.03488 | DOI | MR
[29] Yu. G. Ignat'ev, I. A. Kokh, “Peculiarities of cosmological models based on a nonlinear asymmetric scalar doublet with minimal interaction. II. Numerical analysis”, Grav. Cosmol., 25:1 (2019), 37–43 | DOI | MR
[30] Yu. G. Ignat'ev, D. Yu. Ignat'ev, “A complete model of cosmological evolution of a scalar field with Higgs potential and Euclidean cycles”, Grav. Cosmol., 26:1 (2020), 29–37, arXiv: 2005.14010 | DOI | MR
[31] Yu. G. Ignatev, I. A. Kokh, “Polnaya kosmologicheskaya model na osnove asimmetrichnogo skalyarnogo dubleta Khiggsa”, TMF, 207:1 (2021), 133–176, arXiv: 2104.01054 | DOI | DOI
[32] Y.-F. Cai, E. N. Saridakis, M. R. Setare, J.-Q. Xia, “Quintom cosmology: theoretical implications and observations”, Phys. Rep., 493:1 (2010), arXiv: 0909.2776 | DOI | MR
[33] T. Chiba, T. Okabe, M. Yamaguchi, “Kinetically driven quintessence”, Phys. Rev. D, 62:2 (2000), 023511, 3 pp. | DOI
[34] G. Leon, A. Paliathanasis, J. L. Morales-Martínez, “The past and future dynamics of quintom dark energy models”, Eur. Phys. J. C, 78 (2018), 753, 22 pp. | DOI
[35] Yu. G. Ignatyev, D. Yu. Ignatyev, “Statistical systems with phantom scalar interaction in gravitation theory. I. Microscopic dynamics”, Grav. Cosmol., 20:4 (2014), 299–303, arXiv: 1408.3404 | DOI | MR | Zbl
[36] Yu. G. Ignatyev, A. A. Agathonov, D. Yu. Ignatyev, “Statistical systems with phantom scalar interaction in gravitation theory. II. Macroscopic equations and cosmological models”, Grav. Cosmol., 20:4 (2014), 304–308, arXiv: 1408.3419 | DOI | MR
[37] Yu. G. Ignatyev, “Nonminimal macroscopic models of a scalar field based on microscopic dynamics: extension of the theory to negative masses”, Grav. Cosmol., 21:4 (2015), 296–308, arXiv: 1504.02768 | DOI | MR
[38] Yu. G. Ignatyev, A. A. Agathonov, “Numerical models of cosmological evolution of a degenerate Fermi-system of scalar charged particles”, Grav. Cosmol., 21:2 (2015), 105–112, arXiv: 1408.4738 | DOI | MR
[39] Y. Ignat'ev, A. Agathonov, M. Mikhailov, D. Ignatyev, “Cosmological evolution of statistical system of scalar charged particles”, Astrophys. Space Sci., 357 (2015), 61, 21 pp., arXiv: 1411.6244 | DOI
[40] Yu. G. Ignat'ev, A. A. Agathonov, D. Yu. Ignatyev, “Statistical cosmological fermion systems with phantom scalar interaction of particles”, Grav. Cosmol., 24:1 (2018), 1–12 | DOI | MR
[41] Yu. G. Ignat'ev, “Cosmological evolution of a scalar-charged degenerate cosmological plasma with Higgs scalar fields”, Grav. Cosmol., 26:4 (2020), 297–306 | DOI | MR
[42] Yu. G. Ignat'ev, “Stability of the cosmological system of degenerated scalar charged fermions and Higgs scalar fields. I. Mathematical model of linear plane perturbations”, Grav. Cosmol., 27:1 (2021), 30–35, arXiv: 2103.13866 | DOI | MR
[43] Yu. G. Ignat'ev, “Stability of the cosmological system of degenerated scalar charged fermions and Higgs scalar fields. II. Evolution of short-wave perturbations”, Grav. Cosmol., 27:1 (2021), 36–41, arXiv: 2103.13867 | DOI | MR
[44] B. Saha, G. N. Shikin, “Interacting spinar and scalar fields in Bianchi type I universe filled with perfect fluid: exact self-consistent solutions”, Gen. Rel. Grav., 29:9 (1997), 1099–1113, arXiv: gr-qc/9609056 | DOI | MR
[45] B. Saha, “Spinor field in Bianchi type-I universe: regular solutions”, Phys. Rev. D, 64:12 (2001), 123501, 15 pp., arXiv: gr-qc/0107013 | DOI | MR
[46] B. Saha, T. Boyadjiev, “Bianchi type-I cosmology with scalar and spinor fields”, Phys. Rev. D, 69:12 (2004), 124010, 12 pp., arXiv: gr-qc/0311045 | DOI | MR
[47] M. O. Ribas, F. P. Devecchi, G. M. Kremer, “Fermions as sources of accelerated regimes in cosmology”, Phys. Rev. D, 72:12 (2005), 123502, 6 pp., arXiv: gr-qc/0511099 | DOI
[48] B. Saha, “Nonlinear spinor field in Bianchi type-I cosmology: Inflation, isotropization, and late time acceleration”, Phys. Rev. D, 74:12 (2006), 124030, 8 pp. | DOI | MR
[49] B. Saha, V. Rikhvitsky, “Anisotropic cosmological models with spinor and scalar fields and viscous fluid in presence of a $\Lambda$ term: qualitative solutions”, J. Math. Phys., 49:11 (2008), 112502, 24 pp. | DOI | MR
[50] L. P. Chimento, F. P. Devecchi, M. Forte, G. M. Kremer, “Phantom cosmologies and fermions”, Class. Quantum Grav., 25:8 (2008), 085007, 10 pp., arXiv: 0707.4455 | DOI | MR
[51] M. O. Ribas, F. P. Devecchi, G. M. Kremer, “Cosmological model with non-minimally coupled fermionic field”, Europhys. Lett., 81:1 (2008), 19001, 6 pp., arXiv: 0710.5155 | DOI | MR
[52] J. Wang, S.-W. Cui, C.-M. Zhang, “Thermodynamics of spinor quintom”, Phys. Lett. B, 683:2–3 (2010), 101–107, arXiv: 0901.1439 | DOI | MR
[53] L. Fabbri, “Conformal gravity with the most general ELKO matter”, Phys. Rev. D, 85:4 (2012), 047502, 4 pp., arXiv: 1101.2566 | DOI
[54] B. Saha, “Nonlinear spinor fields in Bianchi type-I spacetime: problems and possibilities”, Astrophys. Space Sci., 357 (2015), 28, 16 pp. | DOI
[55] K. A. Bronnikov, Yu. P. Rybakov, B. Saha, “Spinor fields in spherical symmetry: Einstein–Dirac and other space-times”, Eur. Phys. J. Plus, 135 (2020), 124, 10 pp. | DOI
[56] J. L. Synge, Relativity: The General Theory, Nord-Holland, Amsterdam, 1960 | MR
[57] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. II, Teoriya polya, Fizmatlit, M., 2006 | MR | Zbl
[58] Yu. G. Ignatev, “Relyativistskaya kineticheskaya teoriya i konformnye preobrazovaniya”, Izv. vuzov. Fizika, 25:4 (1982), 92–96
[59] Yu. G. Ignatev, “Relyativistskii kanonicheskii formalizm i invariantnaya odnochastichnaya funktsiya raspredeleniya v OTO”, Izv. vuzov. Fizika, 26:8 (1983), 19–23
[60] Yu. G. Ignat'ev, “Statistical dynamics of a classical particle ensemble in the gravitational field”, Grav. Cosmol., 13:1 (2007), 59–79, arXiv: 1012.5578
[61] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, Nauka, M., 1966 | MR
[62] E. Cartan, Les espaces de Finsler, Hermann, Paris, 1934 | Zbl
[63] A. Z. Petrov, Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966
[64] Yu. G. Ignatev, “Relyativistskie kineticheskie uravneniya dlya neuprugo vzaimodeistvuyuschikh chastits v gravitatsionnom pole”, Izv. vuzov. Fizika, 26:8 (1983), 19–23
[65] Yu. G. Ignatev, “Relyativistskaya dinamika i invariantnye funktsii istochnikov”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 2015, no. 2(11), 48–61
[66] E. Tauber, J. W. Weinderg, “Internal state of a gravitating gas”, Phys. Rev., 122:4 (1961), 1342–1365 | DOI | MR
[67] N. A. Chernikov, “Kineticheskoe uravnenie dlya relyativistskogo gaza v proizvolnom gravitatsionnom pole”, Dokl. AN SSSR, 144:1 (1962), 89–92 | MR | Zbl
[68] Yu. G. Ignatev, Relyativistskaya kinenticheskaya teoriya neravnovesnykh protsessov v gravitatsionnykh polyakh, OOO “Foliant”', Kazan, 2010, \par http://www.stfi.ru/rpha/2013_3_Ignatiev.pdf
[69] O. I. Bogoyavlenskii, Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR | MR | Zbl | Zbl