Cosmological models based on a statistical system of scalar charged degenerate fermions and an asymmetric Higgs scalar doublet
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 142-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of the general relativistic statistical and kinetic theory, a consistent closed cosmological model is formulated. It is based on a statistical system of scalar-charged fermions interacting by means of classical and phantom scalar fields. Based on the study of the microscopic dynamics of scalar-charged particles, within the framework of the Lagrangian an Hamiltonian formalisms, a function of the dynamical mass of scalar-charged particles is constructed and it is shown that the nonnegativity condition for this function has to be removed for the consistency of the theory. On the basis of the Lagrangian formalism, equations of gravitational and scalar fields with singular sources are formulated and microscopic conservation laws are obtained. Within the framework of the general relativistic kinetic theory, macroscopic equations of gravitational and scalar fields are formulated and macroscopic conservation laws are obtained. The full correspondence of these equations to microscopic equations with singular sources is demonstrated. On the basis of the obtained equations, a cosmological model for a degenerate system of scalar-charged fermions is formulated. An exact solution of the constitutive equations for a degenerate scalar-charged plasma in the cosmological model is obtained, which allows significantly simplifying the original system of equations. On the basis of the obtained solution of the constitutive equations, two fundamentally different cosmological models are formulated, one of which has two types of single-scalar-charged fermions and the other has one kind of fermions charged with two charges of various nature. A qualitative analysis of the obtained 6-dimensional dynamical system for a two-component model is carried out. It is shown that in such models, acceleration deceleration modes become possible at the late stages of the evolution of the Universe.
Keywords: scalar-charged plasma, cosmological model, scalar field, asymmetric scalar doublet, qualitative analysis, macroscopic and microscopic equations.
@article{TMF_2021_209_1_a7,
     author = {Yu. G. Ignat'ev and D. Yu. Ignatyev},
     title = {Cosmological models based on a~statistical system of scalar charged degenerate fermions and an~asymmetric {Higgs} scalar doublet},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {142--183},
     year = {2021},
     volume = {209},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a7/}
}
TY  - JOUR
AU  - Yu. G. Ignat'ev
AU  - D. Yu. Ignatyev
TI  - Cosmological models based on a statistical system of scalar charged degenerate fermions and an asymmetric Higgs scalar doublet
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 142
EP  - 183
VL  - 209
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a7/
LA  - ru
ID  - TMF_2021_209_1_a7
ER  - 
%0 Journal Article
%A Yu. G. Ignat'ev
%A D. Yu. Ignatyev
%T Cosmological models based on a statistical system of scalar charged degenerate fermions and an asymmetric Higgs scalar doublet
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 142-183
%V 209
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a7/
%G ru
%F TMF_2021_209_1_a7
Yu. G. Ignat'ev; D. Yu. Ignatyev. Cosmological models based on a statistical system of scalar charged degenerate fermions and an asymmetric Higgs scalar doublet. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 142-183. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a7/

[1] Yu. G. Ignatev, “Zakony sokhraneniya i termodinamicheskoe ravnovesie v obscherelyativistskoi kineticheskoi teorii neuprugo vzaimodeistvuyuschikh chastits”, Izv. vuzov. Fizika, 26:12 (1983), 9–14 | DOI

[2] Yu. G. Ignatev, R. R. Kuzeev, “Termodinamicheskoe ravnovesie samogravitiruyuschei plazmy so skalyarnym vzaimodeistviem”, Ukr. fiz. zhurn., 29:7 (1984), 1021–1025

[3] Yu. G. Ignatyev, R. F. Miftakhov, “Statistical systems of particles with scalar interaction in cosmology”, Grav. Cosmol., 12:2–3 (2006), 179–185

[4] K. A. Bronnikov, J. C. Fabris, “Regular phantom black holes”, Phys. Rev. Lett., 96:25 (2006), 251101, 4 pp. | DOI | MR

[5] S. V. Bolokhov, K. A. Bronnikov, M. V. Skvortsova, “Magnetic black universes and wormholes with a phantom scalar”, Class. Quantum Grav., 29:24 (2012), 245006, 13 pp. | DOI | MR

[6] J. M. Cline, S. Jeon, G. D. Moore, “The phantom menaced: constraints on low-energy effective ghosts”, Phys. Rev. D, 70:4 (2004), 043543, 4 pp., arXiv: hep-ph/0311312 | DOI

[7] R. Kallosh, J. U. Kang, A. Linde, V. Mukhanov, “The new ekpyrotic ghost”, J. Cosmol. Astropart. Phys., 2008:4 (2008), 018, 23 pp. | DOI | MR

[8] S. Nojiri, E. N. Saridakis, “Phantom without ghost”, Astrophys. Space Sci., 347:1 (2013), 221–226 | DOI

[9] F. Sbisa, “Classical and quantum ghosts”, Eur. J. Phys., 36:1 (2014), 015009, 15 pp. | DOI

[10] S. Yu. Vernov, “Tochnye resheniya nelokalnykh nelineinykh polevykh uravnenii v kosmologii”, TMF, 166:3 (2011), 452–464, arXiv: 1005.5007 | DOI | DOI | MR

[11] S. M. Carroll, M. Hoffman, M. Trodden, “Can the dark energy equation-of-state parameter $w$ be less than $-1$?”, Phys. Rev. D, 68:2 (2003), 023509, 11 pp., arXiv: astro-ph/0301273 | DOI

[12] M. G. Richarte, G. M. Kremer, “Cosmological perturbations in transient phantom inflation scenarios”, Eur. Phys. J. C, 77:1 (2016), 51, 11 pp., arXiv: 1612.03822 | DOI

[13] A. Tripathi, A. Sangwan, H. K. Jassal, “Dark energy equation of state parameter and its evolution at low redshift”, J. Cosmol. Astropart. Phys., 2017, no. 6, 012, 16 pp. | DOI | MR

[14] Y. Ma, J. Zhang, S. Cao, X. Zheng, T. Xu, J. Qi, “The generalized cosmic equation of state: a revised study with cosmological standard rulers”, Eur. Phys. J. C, 77:12 (2017), 891, 9 pp. | DOI

[15] J. Meyers, G. Aldering, K. Barbary et al., “The Hubble space telescope cluster supernova survey. III. Correlated properties of type Ia Supernovae and their hosts at $0.91.46$”, Astrophys. J., 750:1 (2012), 1, 23 pp. | DOI

[16] R. Terlevich, E. Terlevich, J. Melnick, R. Chávez, M. Plionis, F. Bresolin, S. Basilakos, “On the road to precision cosmology with high-redshift Hii galaxies”, Monthly Not. Roy. Astron. Soc., 451:3 (2015), 3001–3010, arXiv: 1505.04376 | DOI

[17] R. Chávez, M. Plionis, S. Basilakos, R. Terlevich, E. Terlevich, J. Melnick, F. Bresolin, A. L. González-Morán, “Constraining the dark energy equation of state with H II galaxies”, Monthly Not. Roy. Astron. Soc., 462:3 (2016), 2431–2439 | DOI

[18] I. Ya. Aref'eva, A. S. Koshelev, S. Yu. Vernov, “Crossing the $w=-1$ barrier in the D3-brane dark energy model”, Phys. Rev. D, 72:6 (2005), 064017, arXiv: astro-ph/0507067 | DOI

[19] I. Ya. Arefeva, S. Yu. Vernov, A. S. Kosheleva, “Tochnoe reshenie v strunnoi kosmologicheskoi modeli”, TMF, 148:1 (2006), 23–41, arXiv: astro-ph/0412619 | DOI | DOI | MR | Zbl

[20] S. Yu. Vernov, “Postroenie tochnykh reshenii v dvukhpolevykh kosmologicheskikh modelyakh”, TMF, 155:1 (2008), 47–61 | DOI | DOI | MR | Zbl

[21] R. R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state”, Phys. Lett. B, 545:1–2 (2002), 23–29, arXiv: astro-ph/9908168 | DOI

[22] Yu. G. Ignat'ev, “Qualitative and numerical analysis of a cosmological modely based on a classical massive scalar field”, Grav. Cosmol., 23:2 (2017), 131–141 | DOI | MR

[23] Yu. G. Ignatev, “Kachestvennyi i chislennyi analiz kosmologicheskoi modeli s fantomnym skalyarnym polem”, Izv. vuzov. Fizika, 59:12 (2017), 83–87 | DOI

[24] Yu. G. Ignat'ev, A. A. Agathonov, “Qualitative and numerical analysis of a cosmological model based on a phantom scalar field with self-interaction”, Grav. Cosmol., 23:3 (2017), 230–235 | DOI | MR

[25] Yu. G. Ignatev, I. A. Kokh, “Kachestvennyi i chislennyi analiz kosmologicheskoi modeli, osnovannoi na asimmetrichnom skalyarnom dublete s minimalnymi svyazyami. I. Kachestvennyi analiz modeli”, Izv. vuzov. Fizika, 61:6 (2018), 72–81 | DOI

[26] Yu. G. Ignatev, I. A. Kokh, “Kachestvennyi i chislennyi analiz kosmologicheskoi modeli, osnovannoi na asimmetrichnom skalyarnom dublete s minimalnymi svyazyami. II. Chislennoe modelirovanie fazovykh traektorii”, Izv. vuzov. Fizika, 61:9 (2018), 38–42 | DOI

[27] Yu. G. Ignatev, I. A. Kokh, “Kachestvennyi i chislennyi analiz kosmologicheskoi modeli, osnovannoi na asimmetrichnom skalyarnom dublete s minimalnymi svyazyami. III. Faktor neodnosvyaznosti i kharakter osobykh tochek”, Izv. vuzov. Fizika, 62:2 (2018), 54–61 | DOI

[28] Yu. G. Ignat'ev, I. A. Kokh, “Peculiarities of cosmological models based on a nonlinear asymmetric scalar doublet with minimal interaction. I. Qualitative analysis”, Grav. Cosmol., 25:1 (2019), 24–36, arXiv: 1908.03488 | DOI | MR

[29] Yu. G. Ignat'ev, I. A. Kokh, “Peculiarities of cosmological models based on a nonlinear asymmetric scalar doublet with minimal interaction. II. Numerical analysis”, Grav. Cosmol., 25:1 (2019), 37–43 | DOI | MR

[30] Yu. G. Ignat'ev, D. Yu. Ignat'ev, “A complete model of cosmological evolution of a scalar field with Higgs potential and Euclidean cycles”, Grav. Cosmol., 26:1 (2020), 29–37, arXiv: 2005.14010 | DOI | MR

[31] Yu. G. Ignatev, I. A. Kokh, “Polnaya kosmologicheskaya model na osnove asimmetrichnogo skalyarnogo dubleta Khiggsa”, TMF, 207:1 (2021), 133–176, arXiv: 2104.01054 | DOI | DOI

[32] Y.-F. Cai, E. N. Saridakis, M. R. Setare, J.-Q. Xia, “Quintom cosmology: theoretical implications and observations”, Phys. Rep., 493:1 (2010), arXiv: 0909.2776 | DOI | MR

[33] T. Chiba, T. Okabe, M. Yamaguchi, “Kinetically driven quintessence”, Phys. Rev. D, 62:2 (2000), 023511, 3 pp. | DOI

[34] G. Leon, A. Paliathanasis, J. L. Morales-Martínez, “The past and future dynamics of quintom dark energy models”, Eur. Phys. J. C, 78 (2018), 753, 22 pp. | DOI

[35] Yu. G. Ignatyev, D. Yu. Ignatyev, “Statistical systems with phantom scalar interaction in gravitation theory. I. Microscopic dynamics”, Grav. Cosmol., 20:4 (2014), 299–303, arXiv: 1408.3404 | DOI | MR | Zbl

[36] Yu. G. Ignatyev, A. A. Agathonov, D. Yu. Ignatyev, “Statistical systems with phantom scalar interaction in gravitation theory. II. Macroscopic equations and cosmological models”, Grav. Cosmol., 20:4 (2014), 304–308, arXiv: 1408.3419 | DOI | MR

[37] Yu. G. Ignatyev, “Nonminimal macroscopic models of a scalar field based on microscopic dynamics: extension of the theory to negative masses”, Grav. Cosmol., 21:4 (2015), 296–308, arXiv: 1504.02768 | DOI | MR

[38] Yu. G. Ignatyev, A. A. Agathonov, “Numerical models of cosmological evolution of a degenerate Fermi-system of scalar charged particles”, Grav. Cosmol., 21:2 (2015), 105–112, arXiv: 1408.4738 | DOI | MR

[39] Y. Ignat'ev, A. Agathonov, M. Mikhailov, D. Ignatyev, “Cosmological evolution of statistical system of scalar charged particles”, Astrophys. Space Sci., 357 (2015), 61, 21 pp., arXiv: 1411.6244 | DOI

[40] Yu. G. Ignat'ev, A. A. Agathonov, D. Yu. Ignatyev, “Statistical cosmological fermion systems with phantom scalar interaction of particles”, Grav. Cosmol., 24:1 (2018), 1–12 | DOI | MR

[41] Yu. G. Ignat'ev, “Cosmological evolution of a scalar-charged degenerate cosmological plasma with Higgs scalar fields”, Grav. Cosmol., 26:4 (2020), 297–306 | DOI | MR

[42] Yu. G. Ignat'ev, “Stability of the cosmological system of degenerated scalar charged fermions and Higgs scalar fields. I. Mathematical model of linear plane perturbations”, Grav. Cosmol., 27:1 (2021), 30–35, arXiv: 2103.13866 | DOI | MR

[43] Yu. G. Ignat'ev, “Stability of the cosmological system of degenerated scalar charged fermions and Higgs scalar fields. II. Evolution of short-wave perturbations”, Grav. Cosmol., 27:1 (2021), 36–41, arXiv: 2103.13867 | DOI | MR

[44] B. Saha, G. N. Shikin, “Interacting spinar and scalar fields in Bianchi type I universe filled with perfect fluid: exact self-consistent solutions”, Gen. Rel. Grav., 29:9 (1997), 1099–1113, arXiv: gr-qc/9609056 | DOI | MR

[45] B. Saha, “Spinor field in Bianchi type-I universe: regular solutions”, Phys. Rev. D, 64:12 (2001), 123501, 15 pp., arXiv: gr-qc/0107013 | DOI | MR

[46] B. Saha, T. Boyadjiev, “Bianchi type-I cosmology with scalar and spinor fields”, Phys. Rev. D, 69:12 (2004), 124010, 12 pp., arXiv: gr-qc/0311045 | DOI | MR

[47] M. O. Ribas, F. P. Devecchi, G. M. Kremer, “Fermions as sources of accelerated regimes in cosmology”, Phys. Rev. D, 72:12 (2005), 123502, 6 pp., arXiv: gr-qc/0511099 | DOI

[48] B. Saha, “Nonlinear spinor field in Bianchi type-I cosmology: Inflation, isotropization, and late time acceleration”, Phys. Rev. D, 74:12 (2006), 124030, 8 pp. | DOI | MR

[49] B. Saha, V. Rikhvitsky, “Anisotropic cosmological models with spinor and scalar fields and viscous fluid in presence of a $\Lambda$ term: qualitative solutions”, J. Math. Phys., 49:11 (2008), 112502, 24 pp. | DOI | MR

[50] L. P. Chimento, F. P. Devecchi, M. Forte, G. M. Kremer, “Phantom cosmologies and fermions”, Class. Quantum Grav., 25:8 (2008), 085007, 10 pp., arXiv: 0707.4455 | DOI | MR

[51] M. O. Ribas, F. P. Devecchi, G. M. Kremer, “Cosmological model with non-minimally coupled fermionic field”, Europhys. Lett., 81:1 (2008), 19001, 6 pp., arXiv: 0710.5155 | DOI | MR

[52] J. Wang, S.-W. Cui, C.-M. Zhang, “Thermodynamics of spinor quintom”, Phys. Lett. B, 683:2–3 (2010), 101–107, arXiv: 0901.1439 | DOI | MR

[53] L. Fabbri, “Conformal gravity with the most general ELKO matter”, Phys. Rev. D, 85:4 (2012), 047502, 4 pp., arXiv: 1101.2566 | DOI

[54] B. Saha, “Nonlinear spinor fields in Bianchi type-I spacetime: problems and possibilities”, Astrophys. Space Sci., 357 (2015), 28, 16 pp. | DOI

[55] K. A. Bronnikov, Yu. P. Rybakov, B. Saha, “Spinor fields in spherical symmetry: Einstein–Dirac and other space-times”, Eur. Phys. J. Plus, 135 (2020), 124, 10 pp. | DOI

[56] J. L. Synge, Relativity: The General Theory, Nord-Holland, Amsterdam, 1960 | MR

[57] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. II, Teoriya polya, Fizmatlit, M., 2006 | MR | Zbl

[58] Yu. G. Ignatev, “Relyativistskaya kineticheskaya teoriya i konformnye preobrazovaniya”, Izv. vuzov. Fizika, 25:4 (1982), 92–96

[59] Yu. G. Ignatev, “Relyativistskii kanonicheskii formalizm i invariantnaya odnochastichnaya funktsiya raspredeleniya v OTO”, Izv. vuzov. Fizika, 26:8 (1983), 19–23

[60] Yu. G. Ignat'ev, “Statistical dynamics of a classical particle ensemble in the gravitational field”, Grav. Cosmol., 13:1 (2007), 59–79, arXiv: 1012.5578

[61] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, Nauka, M., 1966 | MR

[62] E. Cartan, Les espaces de Finsler, Hermann, Paris, 1934 | Zbl

[63] A. Z. Petrov, Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966

[64] Yu. G. Ignatev, “Relyativistskie kineticheskie uravneniya dlya neuprugo vzaimodeistvuyuschikh chastits v gravitatsionnom pole”, Izv. vuzov. Fizika, 26:8 (1983), 19–23

[65] Yu. G. Ignatev, “Relyativistskaya dinamika i invariantnye funktsii istochnikov”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 2015, no. 2(11), 48–61

[66] E. Tauber, J. W. Weinderg, “Internal state of a gravitating gas”, Phys. Rev., 122:4 (1961), 1342–1365 | DOI | MR

[67] N. A. Chernikov, “Kineticheskoe uravnenie dlya relyativistskogo gaza v proizvolnom gravitatsionnom pole”, Dokl. AN SSSR, 144:1 (1962), 89–92 | MR | Zbl

[68] Yu. G. Ignatev, Relyativistskaya kinenticheskaya teoriya neravnovesnykh protsessov v gravitatsionnykh polyakh, OOO “Foliant”', Kazan, 2010, \par http://www.stfi.ru/rpha/2013_3_Ignatiev.pdf

[69] O. I. Bogoyavlenskii, Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR | MR | Zbl | Zbl