$p$-arton model for modular cusp forms
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 101-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To a modular form, we propose to associate (an infinite number of) complex-valued functions on $p$-adic numbers $\mathbb{Q}_p$ for each prime $p$. We elaborate on the correspondence and study its consequences in terms of the Mellin transform and the $L$-function related to the form. Further, we discuss the case of products of Dirichlet $L$-functions and their Mellin duals, which are convolution products of $\vartheta$-series. The latter are intriguingly similar to nonholomorphic Maass forms of weight zero as suggested by their Fourier coefficients.
Keywords: modular cusp forms, $p$-adic wavelets, theta functions, $L$-functions.
@article{TMF_2021_209_1_a5,
     author = {P. Dutta and D. Ghoshal},
     title = {A~$p$-arton model for modular cusp forms},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {101--124},
     year = {2021},
     volume = {209},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a5/}
}
TY  - JOUR
AU  - P. Dutta
AU  - D. Ghoshal
TI  - A $p$-arton model for modular cusp forms
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 101
EP  - 124
VL  - 209
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a5/
LA  - ru
ID  - TMF_2021_209_1_a5
ER  - 
%0 Journal Article
%A P. Dutta
%A D. Ghoshal
%T A $p$-arton model for modular cusp forms
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 101-124
%V 209
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a5/
%G ru
%F TMF_2021_209_1_a5
P. Dutta; D. Ghoshal. A $p$-arton model for modular cusp forms. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 101-124. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a5/

[1] A. Dabholkar, Ramanujan and quantum black holes, arXiv: 1905.04060

[2] A. Dabholkar, S. Nampuri, “Quantum black holes”, Strings and Fundamental Physics (Munich/Garching, Germany, July 25 – August 6, 2010), Lecture Notes in Physics, 851, eds. M. Baumgartl, I. Brunner, M. Haack, Springer, Berlin, 2012, 165–232, arXiv: 1208.4814 | DOI | Zbl

[3] H. M. Edwards, Riemann's Zeta Function, Dover, Mineola, NY, 2001 | MR

[4] P. Dutta, D. Ghoshal, “Pseudodifferential operators on $\mathbf{Q}_p$ and $L$-series”, accepted for publication in $p$-Adic Numbers Ultrametric Anal. Appl., arXiv: 2003.00901

[5] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | DOI | MR | MR | Zbl

[6] S. V. Kozyrev, “Teoriya vspleskov kak kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. matem., 66:2 (2002), 149–158, arXiv: \href{http://arxiv.org/abs/} math-ph/0012019 | DOI | DOI | MR | Zbl

[7] A. Chattopadhyay, P. Dutta, S. Dutta, D. Ghoshal, “Matrix model for Riemann zeta via its local factors”, Nucl. Phys. B, 954 (2020), 114996, 37, arXiv: 1807.07342 | DOI | MR

[8] D. Spector, “Supersymmetry and the Möbius inversion function”, Commun. Math. Phys., 127:2 (1990), 239–252 | DOI | MR

[9] B. Julia, “Statistical theory of numbers”, Number Theory and Physics, Proceedings of the Winter School (Les Houches, France, August 7–16, 1989), Springer Proceedings in Physics, 47, eds. J.-M. Luck, P. Moussa, M. Waldschmidt, Springer, Berlin, 1990, 276–293 | DOI | MR

[10] I. Bakas, M. Bowick, “Curiosities of arithmetic gases”, J. Math. Phys., 32:7 (1991), 1881–1884 | DOI | MR

[11] B. L. Julia, “Thermodynamic limit in number theory: Riemann–Beurling gases”, Phys. A, 203:3–4 (1994), 425–436 | DOI | MR

[12] P. Dutta, D. Ghoshal, “Phase operator on $L^2(\mathbb{Q}_p)$ and the zeroes of Fisher and Riemann”, Advances in Non-Archimedean Analysis and Applications. The p-adic Methodology in STEAM-H, STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics Health, eds. W. Zúñiga-Galindo, Bourama Toni, Springer, Cham, Switzerland, 2021, arXiv: 2102.13445

[13] J. Lewis, D. Zagier, “Period functions for Maass wave forms. I”, Ann. Math., 153:1 (2001), 191–258 | DOI | MR

[14] Zh.-P. Serr, Kurs arifmetiki, Mir, M., 1972 | MR | MR | Zbl

[15] N. Koblits, Vvedenie v ellipticheskie krivye i modulyarnye formy, IO NFMI, Novokuznetsk, 2000 | DOI | MR | MR

[16] E. J. Warner, Modular forms and $L$-functions: a crash course, \par https://www.math.columbia.edu/<nobr>$\sim$</nobr>warner/notes/ClassicalModularForms.pdf

[17] A. Sutherland {12pt}\selectfont https://dspace.mit.edu/bitstream/handle/1721.1/97521/18-783-spring-2013/contents/} \fontsize{9

[18] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfnye funktsii, Obobschennye funktsii, 6, Nauka, M., 1966 | MR

[19] A. Yu. Khrennikov, S. V. Kozyrev, W. A. Zúñiga-Galindo, Ultrametric Pseudodifferential Equations and Applications, Encyclopedia Math. Appl., 168, Cambridge Univ. Press, Cambridge, 2018 | DOI | MR

[20] P. Dutta, D. Ghoshal, A. Lala, “Enhanced symmetry of the $p$-adic wavelets”, Phys. Lett. B, 783 (2018), 421–427, arXiv: 1804.00958 | DOI

[21] D. Goldfeld, J. Hundley, Automorphic Representations and $L$-Functions for the General Linear Group, v. 1, Cambridge Studies in Advanced Mathematics, 129, Cambridge Univ. Press, Cambridge, 2011 | DOI | MR

[22] J. B. Conrey, W. Duke, D. W. Farmer, “The distribution of the eigenvalues of Hecke operators”, Acta Arith., 78:4 (1997), 405–409, arXiv: math/9609214 | DOI | MR

[23] J.-P. Serre, “Répartition asymptotique des valeurs propres de l'opérateur de Hecke $T_p$”, J. Amer. Math. Soc., 10:1 (1997), 75–102 | DOI | MR

[24] T. M. Apostol, Introduction to Analytical Number Theory, Springer, New York, 1976 | MR

[25] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, ryadov i proizvedenii, BKhV-Peterburg, SPb., 2011