A~$p$-arton model for modular cusp forms
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 101-124

Voir la notice de l'article provenant de la source Math-Net.Ru

To a modular form, we propose to associate (an infinite number of) complex-valued functions on $p$-adic numbers $\mathbb{Q}_p$ for each prime $p$. We elaborate on the correspondence and study its consequences in terms of the Mellin transform and the $L$-function related to the form. Further, we discuss the case of products of Dirichlet $L$-functions and their Mellin duals, which are convolution products of $\vartheta$-series. The latter are intriguingly similar to nonholomorphic Maass forms of weight zero as suggested by their Fourier coefficients.
Keywords: modular cusp forms, $p$-adic wavelets, theta functions, $L$-functions.
@article{TMF_2021_209_1_a5,
     author = {P. Dutta and D. Ghoshal},
     title = {A~$p$-arton model for modular cusp forms},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {101--124},
     publisher = {mathdoc},
     volume = {209},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a5/}
}
TY  - JOUR
AU  - P. Dutta
AU  - D. Ghoshal
TI  - A~$p$-arton model for modular cusp forms
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 101
EP  - 124
VL  - 209
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a5/
LA  - ru
ID  - TMF_2021_209_1_a5
ER  - 
%0 Journal Article
%A P. Dutta
%A D. Ghoshal
%T A~$p$-arton model for modular cusp forms
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 101-124
%V 209
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a5/
%G ru
%F TMF_2021_209_1_a5
P. Dutta; D. Ghoshal. A~$p$-arton model for modular cusp forms. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 101-124. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a5/