Mots-clés : scalar product
@article{TMF_2021_209_1_a4,
author = {S. Belliard and N. A. Slavnov},
title = {Overlap between usual and modified {Bethe} vectors},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {82--100},
year = {2021},
volume = {209},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a4/}
}
S. Belliard; N. A. Slavnov. Overlap between usual and modified Bethe vectors. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 82-100. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a4/
[1] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | DOI | MR
[2] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Symmétries quantiques [Quantum Symmetries], Proceedings of the Les Houches summer school, Session LXIV (Les Houches, France, August 1 – September 8, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219 | MR | Zbl
[3] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR
[4] S. Belliard, N. Crampé, “Heisenberg XXX model with general boundaries: eigenvectors from algebraic Bethe ansatz”, SIGMA, 9 (2013), 072, 12 pp., arXiv: 1309.6165 | MR
[5] J. Cao, W. L. Yang, K. Shi, Y. Wang, “Off-diagonal Bethe ansatz and exact solution a topological spin ring”, Phys. Rev. Lett., 111:13 (2013), 137201, 5 pp., arXiv: 1305.7328 | DOI
[6] Y. Wang, W.-L. Yang, J. Cao, K. Shi, Off-Diagonal Bethe Ansatz for Exactly Solvable Models, Springer, Heidelberg, 2015 | MR
[7] S. Belliard, N. A. Slavnov, B. Vallet, “Scalar product of twisted XXX modified Bethe vectors”, J. Stat. Mech. Theory Exp., 2018:9 (2018), 93103, 28 pp., arXiv: 1805.11323 | DOI | MR
[8] S. Belliard, N. A. Slavnov, B. Vallet, “Modified algebraic Bethe ansatz: Twisted XXX case”, SIGMA, 14 (2018), 054, 18 pp., arXiv: 1804.00597 | MR
[9] S. Belliard, N. A. Slavnov, “Scalar products in twisted XXX spin chain. Determinant representation”, SIGMA, 15 (2019), 066, 30 pp., arXiv: 1906.06897 | MR
[10] Gaudin M., Modèles exacts en mécanique statistique: la méthode de Bethe et ses généralisations, Preprint, CEA-N-1559:1, Centre d'Etudes Nucléaires de Saclay, Saclay, France, 1972
[11] M. Goden, Volnovaya funktsiya Bete, Novokuznetskii FMI, Novokuznetsk, 2000 | MR | MR | Zbl
[12] V. E. Korepin, “Calculation of norms of Bethe wave functions”, Commun. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl
[13] N. A. Slavnov, “Vychislenie skalyarnykh proizvedenii volnovykh funktsii i formfaktorov v ramkakh algebraicheskogo anzatsa Bete”, TMF, 79:2 (1989), 232–240 | DOI | MR
[14] S. Belliard, R. A. Pimenta, “Slavnov and Gaudin–Korepin formulas for models without ${\rm U}(1)$ symmetry: the twisted XXX chain”, SIGMA, 11 (2015), 099, 12 pp., arXiv: 1506.06550 | DOI | MR
[15] A. Gorsky, A. Zabrodin, A. Zotov, “Spectrum of quantum transfer matrices via classical many-body systems”, JHEP, 2014:1 (2014), 070, 28 pp., arXiv: 1310.6958 | DOI | MR
[16] A. G. Izergin, “Statisticheskaya summa shestivershinnoi modeli v konechnom ob'eme”, Dokl. AN SSSR, 297:2 (1987), 331–333 | MR | Zbl
[17] N. Gromov, F. Levkovich-Maslyuk, P. Ryan, “Determinant form of correlators in high rank integrable spin chains via separation of variables”, JHEP, 2021:5 (2021), 169, 81 pp., arXiv: 2011.08229 | DOI
[18] O. Tsuchiya, “Determinant formula for the six-vertex model with reflecting end”, J. Math. Phys., 39:11 (1998), 5946–5951, arXiv: solv-int/9804010 | DOI | MR
[19] S. Belliard, N. A. Slavnov, “Why scalar products in the algebraic Bethe ansatz have determinant representation”, JHEP, 10 (2019), 103, 17 pp., arXiv: 1908.00032 | DOI