Matrix extension of multidimensional dispersionless integrable hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 59-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consistently develop a recently proposed scheme of matrix extensions of dispersionless integrable systems in the general case of multidimensional hierarchies, concentrating on the case of dimension $d\geqslant 4$. We present extended Lax pairs, Lax–Sato equations, matrix equations on the background of vector fields, and the dressing scheme. Reductions, the construction of solutions, and connections to geometry are discussed. We separately consider the case of an Abelian extension, for which the Riemann–Hilbert equations of the dressing scheme are explicitly solvable and give an analogue of the Penrose formula in curved space.
Keywords: dispersionless integrable system, gauge field, self-dual Yang–Mills equations.
@article{TMF_2021_209_1_a3,
     author = {A. A. Belavin and S. E. Parkhomenko},
     title = {Matrix extension of multidimensional dispersionless integrable hierarchies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {59--81},
     year = {2021},
     volume = {209},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a3/}
}
TY  - JOUR
AU  - A. A. Belavin
AU  - S. E. Parkhomenko
TI  - Matrix extension of multidimensional dispersionless integrable hierarchies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 59
EP  - 81
VL  - 209
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a3/
LA  - ru
ID  - TMF_2021_209_1_a3
ER  - 
%0 Journal Article
%A A. A. Belavin
%A S. E. Parkhomenko
%T Matrix extension of multidimensional dispersionless integrable hierarchies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 59-81
%V 209
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a3/
%G ru
%F TMF_2021_209_1_a3
A. A. Belavin; S. E. Parkhomenko. Matrix extension of multidimensional dispersionless integrable hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 59-81. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a3/

[1] D. Gepner, “Exactly solvable string compactifications on manifolds of ${\rm SU}(N)$ holonomy”, Phys. Lett. B, 199:3 (1987), 380–388 ; “Space-time supersymmetry in compactified string theory and superconformal models”, Nucl. Phys. B, 296:4 (1988), 757–778 | DOI | MR | DOI

[2] B. R. Greene, M. R. Plesser, “Duality in Calabi–Yau moduli space”, Nucl. Phys. B, 338:1 (1990), 15–37 | DOI | MR

[3] F. Gliozzi, J. Scherk, D. Olive, “Supersymmetry, supergravity theories and the dual spinor model”, Nucl. Phys. B, 122:2 (1977), 253–290 | DOI

[4] T. Eguchi, H. Ooguri, A. Taormina, S.-K. Yang, “Superconformal algebras and string compactification on manifolds with ${\rm SU}(n)$ holonomy”, Nucl. Phys. B, 315:1 (1989), 193–221 | DOI | MR

[5] B. L. Feigin, A. M. Semikhatov, V. A. Sirota, I. Yu. Tipunin, “Resolutions and characters of irredicible representations of the $N=2$ superconformal algebra”, Nucl. Phys. B, 536:3 (1998), 617–656, arXiv: hep-th/9805179 | DOI | MR

[6] B. L. Feigin, A. M. Semikhatov, Free-field resolutions of the unitary $N=2$ super-Virasoro representations, arXiv: hep-th/9810059

[7] W. Lerche, C. Vafa, N. P. Warner, “Chiral rings in $N=2$ superconformal theories”, Nucl. Phys. B, 324:2 (1989), 427–474 | DOI | MR

[8] A. Schwimmer, N. Seiberg, “Comments on the $N=2,3,4$ superconformal algebras in two dimensions”, Phys. Lett. B, 184:2–3 (1987), 191–196 | DOI | MR

[9] A. B. Zamolodchikov, V. A. Fateev, “Polya besporyadka v dvumernoi konformnoi kvantovoi teorii polya i $N=2$ rasshireniya supersimmetrii”, ZhETF, 90:5 (1986), 1553–1556

[10] P. Di Vecchia, J. L. Petersen, M. Yu, “On the unitary representations of $N=2$ superconformal algebra”, Phys. Lett. B, 172:2 (1986), 211–215 | DOI | MR

[11] B. L. Feigin, A. M. Semikhatov, I. Yu. Tipunin, “Equivalence between chain categories of representations of affine $sl(2)$ and $N=2$ superconformal algebras”, J. Math. Phys., 39:7 (1998), 3865–3905, arXiv: hep-th/9701043 | DOI | MR

[12] M. Krawitz, FJRW rings and Landau–Ginsburg mirror symmetry, arXiv: 0906.0796

[13] P. Berglund, T. Hübsch, “A generalized construction of mirror manifolds”, Nucl. Phys. B, 393:1–2 (1993), 377–391, arXiv: hep-th/9201014 | DOI

[14] A. Belavin, B. Eremin, “On the equivalence of Batyrev and BHK mirror symmetry constructions”, Nucl. Phys. B, 961 (2020), 115271, 10 pp., arXiv: 2010.07687 | DOI | MR

[15] L. Dixon, J. H. Harvey, C. Vafa, E. Witten, “Strings on orbifolds”, Nucl. Phys. B, 261:4 (1985), 678–686 ; “Strings on orbifolds (II)”, 274:2 (1986), 285–314 | DOI | MR | DOI