Mots-clés : exact solutions.
@article{TMF_2021_209_1_a2,
author = {R. Conte},
title = {Explicit breather solution of the~nonlinear {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {46--58},
year = {2021},
volume = {209},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a2/}
}
R. Conte. Explicit breather solution of the nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 46-58. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a2/
[1] V. I. Bespalov, V. I. Talanov, “O nitevidnoi strukture puchkov sveta v nelineinykh zhidkostyakh”, Pisma v ZhETF, 3:12 (1966), 471–476
[2] V. E. Zakharov, “Ustoichivost periodicheskikh voln konechnoi amplitudy na poverkhnosti glubokoi zhidkosti”, Zhurn. prikl. mekh. i tekhn. fiz., 9:2 (1968), 86–94 | DOI
[3] N. Akhmediev, A. Ankiewicz, M. Taki, “Waves that appear from nowhere and disappear without a trace”, Phys. Lett. A, 373:6 (2009), 675–678 | DOI
[4] V. V. Konotop, M. Salerno, “Modulational instability in Bose–Einstein condensates in optical lattices”, Phys. Rev. A, 65:2 (2002), 021602, 4 pp., arXiv: cond-mat/0106228 | DOI
[5] P. J. Everitt, M. A. Sooriyabandara, M. Guasoni et al., “Observation of a modulational instability in Bose–Einstein condensates”, Phys. Rev. A, 96:4 (2017), 041601, 5 pp., arXiv: 1703.07502 | DOI
[6] D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves”, Nature, 450:7172 (2007), 1054–1057 | DOI
[7] D.-I. Yeom, B. J. Eggleton, “Rogue waves surface in light”, Nature, 450:7172 (2007), 953–954 | DOI
[8] E. A. Kuznetsov, “O solitonakh v parametricheski neustoichivoi plazme”, Dokl. AN SSSR, 236:3 (1977), 575–577
[9] N. N. Akhmediev, V. I. Korneev, “Modulyatsionnaya neustoichivost i periodicheskie resheniya nelineinogo uravneniya Shredingera”, TMF, 69:2 (1986), 189–194 | DOI | MR | Zbl
[10] N. N. Akhmediev, V. M. Eleonskii, N. E. Kulagin, “Tochnye resheniya pervogo poryadka nelineinogo uravneniya Shredingera”, TMF, 72:2 (1987), 183–196 | DOI | MR | Zbl
[11] G. H. Halphen, Traité des fonctions elliptiques et de leurs applications, v. 1, Théorie des fonctions elliptiques et de leurs développements en série, Gauthier-Villars, Paris, 1886; v. 2, Applications à la mécanique, à la physique, à la géodésie, à la géométrie et au calcul intégral, 1888; v. 3, Fragments, 1891
[12] G. Vanderhaegen, P. Szriftgiser, C. Naveau et al., “Observation of doubly periodic solutions of the nonlinear Schrödinger equation in optical fibers”, Optics Lett., 45:13 (2020), 3757–3760 | DOI
[13] M. Conforti, A. Mussot, A. Kudlinski, S. Trillo, N. Akhmediev, “Doubly periodic solutions of the focusing nonlinear Schrödinger equation: recurrence, period doubling, and amplification outside the conventional modulation-instability band”, Phys. Rev. A, 101:2 (2020), 023843, 11 pp. | DOI | MR
[14] N. Akhmediev, A. Ankiewicz, “First-order exact solutions of the nonlinear Schrödinger equation in the normal-dispersion regime”, Phys. Rev. A, 47:4 (1993), 3213–3221 | DOI
[15] D. Mihalache, N. C. Panoiu, “Exact solutions of nonlinear Schrödinger equation for positive group velocity dispersion”, J. Math. Phys., 33:6 (1992), 2323–2328 | DOI | MR
[16] D. Mihalache, N. C. Panoiu, “Exact solutions of the nonlinear Schrödinger equation for the normal-dispersion regime in optical fibers”, Phys. Rev. A, 45:9 (1992), 6730–6734 | DOI
[17] K. W. Chow, “A class of doubly periodic waves for nonlinear evolution equations”, Wave Motion, 35:1 (2002), 71–90 | DOI | MR
[18] D. V. Chudnovsky, G. V. Chudnovsky, M. Tabor, “Painlevé property and multicomponent isospectral deformation equations”, Phys. Lett. A, 97:7 (1983), 268–274 | DOI | MR
[19] R. Conte, M. Musette, The Painlevé Handbook, Mathematical Physics Studies, Springer, Cham, 2020 | DOI | MR | Zbl
[20] G.-H. Halphen, “Mémoire sur la réduction des équations différentielles linéaires aux formes intégrables”, Mem. Acad. Sci. Inst. France, 28:1 (1884), 1–301
[21] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl
[22] L. Kiepert, “Auflösung der Transformationsgleichungen und Division der elliptischen Functionen”, J. Reine Angew. Math., 1873:76 (1873), 34–44 | DOI | MR
[23] K. W. Chow, R. Conte, N. Xu, “Analytic doubly periodic wave patterns for the integrable discrete nonlinear Schrödinger (Ablowitz–Ladik) model”, Phys. Lett. A, 349:6 (2006), 422–429, arXiv: nlin/0509005 | DOI
[24] T. Kawata, H. Inoue, “Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions”, J. Phys. Soc. Japan, 44:5 (1978), 1722–1729 | DOI | MR
[25] Y.-C. Ma, “The perturbed plane-wave solutions of the cubic Schrödinger equation”, Stud. Appl. Math., 60:1 (1979), 43–58 | DOI | MR
[26] M. A. Alejo, L. Fanelli, C. Muñoz, “The Akhmediev breather is unstable”, São Paulo J. Math. Sci., 13:2 (2019), 391–401 | DOI | MR
[27] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI | MR
[28] V. E. Zakharov, A. B. Shabat, “O vzaimodeistvii solitonov v ustoichivoi srede”, ZhETF, 64:5 (1973), 1627–1639
[29] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–125
[30] K. W. Chow, “Solitary waves on a continuous background”, J. Phys. Soc. Japan, 64:5 (1995), 1524–1528 | DOI