Explicit breather solution of the nonlinear Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 46-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a one-line closed-form expression for the three-parameter breather of the nonlinear Schrödinger equation. This provides an analytic proof of the time period doubling observed in experiments. The experimental check that some pulses generated in optical fibers are indeed such generalized breathers will be drastically simplified.
Keywords: modulational instability, nonlinear Schrödinger equation, nonlinear optics, breather
Mots-clés : exact solutions.
@article{TMF_2021_209_1_a2,
     author = {R. Conte},
     title = {Explicit breather solution of the~nonlinear {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {46--58},
     year = {2021},
     volume = {209},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a2/}
}
TY  - JOUR
AU  - R. Conte
TI  - Explicit breather solution of the nonlinear Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 46
EP  - 58
VL  - 209
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a2/
LA  - ru
ID  - TMF_2021_209_1_a2
ER  - 
%0 Journal Article
%A R. Conte
%T Explicit breather solution of the nonlinear Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 46-58
%V 209
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a2/
%G ru
%F TMF_2021_209_1_a2
R. Conte. Explicit breather solution of the nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 46-58. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a2/

[1] V. I. Bespalov, V. I. Talanov, “O nitevidnoi strukture puchkov sveta v nelineinykh zhidkostyakh”, Pisma v ZhETF, 3:12 (1966), 471–476

[2] V. E. Zakharov, “Ustoichivost periodicheskikh voln konechnoi amplitudy na poverkhnosti glubokoi zhidkosti”, Zhurn. prikl. mekh. i tekhn. fiz., 9:2 (1968), 86–94 | DOI

[3] N. Akhmediev, A. Ankiewicz, M. Taki, “Waves that appear from nowhere and disappear without a trace”, Phys. Lett. A, 373:6 (2009), 675–678 | DOI

[4] V. V. Konotop, M. Salerno, “Modulational instability in Bose–Einstein condensates in optical lattices”, Phys. Rev. A, 65:2 (2002), 021602, 4 pp., arXiv: cond-mat/0106228 | DOI

[5] P. J. Everitt, M. A. Sooriyabandara, M. Guasoni et al., “Observation of a modulational instability in Bose–Einstein condensates”, Phys. Rev. A, 96:4 (2017), 041601, 5 pp., arXiv: 1703.07502 | DOI

[6] D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves”, Nature, 450:7172 (2007), 1054–1057 | DOI

[7] D.-I. Yeom, B. J. Eggleton, “Rogue waves surface in light”, Nature, 450:7172 (2007), 953–954 | DOI

[8] E. A. Kuznetsov, “O solitonakh v parametricheski neustoichivoi plazme”, Dokl. AN SSSR, 236:3 (1977), 575–577

[9] N. N. Akhmediev, V. I. Korneev, “Modulyatsionnaya neustoichivost i periodicheskie resheniya nelineinogo uravneniya Shredingera”, TMF, 69:2 (1986), 189–194 | DOI | MR | Zbl

[10] N. N. Akhmediev, V. M. Eleonskii, N. E. Kulagin, “Tochnye resheniya pervogo poryadka nelineinogo uravneniya Shredingera”, TMF, 72:2 (1987), 183–196 | DOI | MR | Zbl

[11] G. H. Halphen, Traité des fonctions elliptiques et de leurs applications, v. 1, Théorie des fonctions elliptiques et de leurs développements en série, Gauthier-Villars, Paris, 1886; v. 2, Applications à la mécanique, à la physique, à la géodésie, à la géométrie et au calcul intégral, 1888; v. 3, Fragments, 1891

[12] G. Vanderhaegen, P. Szriftgiser, C. Naveau et al., “Observation of doubly periodic solutions of the nonlinear Schrödinger equation in optical fibers”, Optics Lett., 45:13 (2020), 3757–3760 | DOI

[13] M. Conforti, A. Mussot, A. Kudlinski, S. Trillo, N. Akhmediev, “Doubly periodic solutions of the focusing nonlinear Schrödinger equation: recurrence, period doubling, and amplification outside the conventional modulation-instability band”, Phys. Rev. A, 101:2 (2020), 023843, 11 pp. | DOI | MR

[14] N. Akhmediev, A. Ankiewicz, “First-order exact solutions of the nonlinear Schrödinger equation in the normal-dispersion regime”, Phys. Rev. A, 47:4 (1993), 3213–3221 | DOI

[15] D. Mihalache, N. C. Panoiu, “Exact solutions of nonlinear Schrödinger equation for positive group velocity dispersion”, J. Math. Phys., 33:6 (1992), 2323–2328 | DOI | MR

[16] D. Mihalache, N. C. Panoiu, “Exact solutions of the nonlinear Schrödinger equation for the normal-dispersion regime in optical fibers”, Phys. Rev. A, 45:9 (1992), 6730–6734 | DOI

[17] K. W. Chow, “A class of doubly periodic waves for nonlinear evolution equations”, Wave Motion, 35:1 (2002), 71–90 | DOI | MR

[18] D. V. Chudnovsky, G. V. Chudnovsky, M. Tabor, “Painlevé property and multicomponent isospectral deformation equations”, Phys. Lett. A, 97:7 (1983), 268–274 | DOI | MR

[19] R. Conte, M. Musette, The Painlevé Handbook, Mathematical Physics Studies, Springer, Cham, 2020 | DOI | MR | Zbl

[20] G.-H. Halphen, “Mémoire sur la réduction des équations différentielles linéaires aux formes intégrables”, Mem. Acad. Sci. Inst. France, 28:1 (1884), 1–301

[21] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[22] L. Kiepert, “Auflösung der Transformationsgleichungen und Division der elliptischen Functionen”, J. Reine Angew. Math., 1873:76 (1873), 34–44 | DOI | MR

[23] K. W. Chow, R. Conte, N. Xu, “Analytic doubly periodic wave patterns for the integrable discrete nonlinear Schrödinger (Ablowitz–Ladik) model”, Phys. Lett. A, 349:6 (2006), 422–429, arXiv: nlin/0509005 | DOI

[24] T. Kawata, H. Inoue, “Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions”, J. Phys. Soc. Japan, 44:5 (1978), 1722–1729 | DOI | MR

[25] Y.-C. Ma, “The perturbed plane-wave solutions of the cubic Schrödinger equation”, Stud. Appl. Math., 60:1 (1979), 43–58 | DOI | MR

[26] M. A. Alejo, L. Fanelli, C. Muñoz, “The Akhmediev breather is unstable”, São Paulo J. Math. Sci., 13:2 (2019), 391–401 | DOI | MR

[27] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI | MR

[28] V. E. Zakharov, A. B. Shabat, “O vzaimodeistvii solitonov v ustoichivoi srede”, ZhETF, 64:5 (1973), 1627–1639

[29] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–125

[30] K. W. Chow, “Solitary waves on a continuous background”, J. Phys. Soc. Japan, 64:5 (1995), 1524–1528 | DOI