@article{TMF_2021_209_1_a1,
author = {E. S. Trunina and A. V. Zotov},
title = {Multi-pole extension of the~elliptic models of interacting integrable tops},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {16--45},
year = {2021},
volume = {209},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a1/}
}
TY - JOUR AU - E. S. Trunina AU - A. V. Zotov TI - Multi-pole extension of the elliptic models of interacting integrable tops JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 16 EP - 45 VL - 209 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a1/ LA - ru ID - TMF_2021_209_1_a1 ER -
E. S. Trunina; A. V. Zotov. Multi-pole extension of the elliptic models of interacting integrable tops. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 16-45. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a1/
[1] F. Calogero, “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento, 13:11 (1975), 411–416 ; “On a functional equation connected with integrable many-body problems”, 16:3 (1976), 77–80 ; J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 ; M. A. Olshanetsky, A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR | DOI | MR | DOI | MR | DOI | MR
[2] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | DOI | MR | Zbl
[3] J. Gibbons, T. Hermsen, “A generalization of the Calogero-Moser systems”, Phys. D, 11:3 (1984), 337–348 ; S. Wojciechowski, “An integrable marriage of the Euler equations with the Calogero–Moser system”, Phys. Lett. A, 111:3 (1985), 101–103 | DOI | MR | DOI | MR
[4] E. Billey, J. Avan, O. Babelon, “The $r$-matrix structure of the Euler–Calogero–Moser model”, Phys. Lett. A, 186:1–2 (1994), 114–118, arXiv: hep-th/9312042 | DOI | MR
[5] N. Nekrasov, “Holomorphic Bundles and many-body systems”, Commun. Math. Phys., 180:3 (1996), 587–604, arXiv: hep-th/9503157 | DOI | MR
[6] R. J. Baxter, “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice model”, Ann. Phys., 76:1 (1973), 25–47 ; Л. А. Тахтаджян, Л. Д. Фаддеев, “Квантовый метод обратной задачи и $XYZ$ модель Гейзенберга”, УМН, 34:5(209) (1979), 13–63 ; A. A. Belavin, “Dynamical symmetry of integrable quantum systems”, Nucl. Phys. B, 180:2 (1981), 189–200 ; M. P. Richey, C. A. Tracy, “Baxter model: symmetries and the Belavin parametrization”, J. Stat. Phys., 42:3–4 (1986), 311–348 | DOI | DOI | MR | DOI | MR | DOI | MR
[7] E. K. Sklyanin, On complete integrability of the Landau–Lifshitz equation, Preprint LOMI, E-3-79, LOMI, Leningrad, 1979; Е. К. Склянин, “О пуассоновой структуре периодической классической $XYZ$-цепочки”, Зап. научн. сем. ЛОМИ, 150 (1986), 154–180 ; Л. А. Тахтаджан, Д. В. Фадеев, Гамильтонов подход в теории солитонов, Наука, М., 1986 ; Е. К. Склянин, “О некоторых алгебраических структурах, связанных с уравнением Янга–Бакстера”, Функц. анализ и его прил., 16:4 (1982), 27–34 | DOI | DOI | MR | Zbl | DOI | MR | Zbl
[8] A. Levin, M. Olshanetsky, A. Zotov, “Hitchin systems – symplectic Hecke correspondence and two-dimensional version”, Commun. Math. Phys., 236:1 (2003), 93–133, arXiv: \href{http://arxiv.org/abs/nlin/0110045}nlin/0110045 ; A. V. Zotov, “Classical integrable systems and their field-theoretical generalizations”, Phys. Part. Nucl., 37 (2006), 400–443 ; А. В. Зотов, А. В. Смирнов, “Модификации расслоений, эллиптические интегрируемые системы и связанные задачи”, ТМФ, 177:1 (2013), 3–67 | DOI | MR | DOI | DOI | DOI | MR | Zbl
[9] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, “Algebry Li i laksovy uravneniya so spektralnym parametrom na ellipticheskoi krivoi”, Zap. nauchn. sem. LOMI, 150 (1986), 104–118 | DOI | Zbl
[10] M. Gaudin, “Diagonalisation d'une classe d'Hamiltoniens de spin”, J. Physique, 37:10 (1976), 1087–1098 ; La fonction d'onde de Bethe, Masson, Paris, 1983 | DOI | MR | MR
[11] N. Hitchin, “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR
[12] A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Characteristic classes and Hitchin systems. General construction”, Commun. Math. Phys., 316:1 (2012), 1–44, arXiv: 1006.0702 | DOI | MR | Zbl
[13] A. P. Polychronakos, “Calogero–Moser models with noncommutative spin interactions”, Phys. Rev. Lett., 89:12 (2002), 126403, 4 pp., arXiv: ; “Generalized Calogero models through reductions by discrete symmetries”, Nucl. Phys. B, 543:1–2 (1999), 485–498, arXiv: ; “The physics and mathematics of Calogero particles”, J. Phys. A: Math. Gen., 39:41 (2006), 12793–12845, arXiv: hep-th/0112141hep-th/9810211/hep-th/0607033 | DOI | DOI | MR | DOI | MR
[14] A. V. Zotov, A. M. Levin, “Integriruemaya sistema vzaimodeistvuyuschikh ellipticheskikh volchkov”, TMF, 146:1 (2006), 55–64 ; A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Characteristic classes of $\mathrm{SL}(N,\mathbb C)$-bundles and quantum dynamical elliptic $R$-matrices”, J. Phys. A: Math. Theor., 46:3 (2013), 035201, 25 pp., arXiv: math-ph/1208.5750 | DOI | DOI | MR | Zbl | DOI | MR
[15] M. F. Atiyah, “Vector bundles over an elliptic curve”, Proc. London Math. Soc., 7 (1957), 414–452 | DOI | MR
[16] V. Pasquier, “Etiology of IRF models”, Commun. Math. Phys., 118:3 (1988), 355–364 | DOI | MR
[17] A. Levin, M. Olshanetsky, A. Zotov, “Planck constant as spectral parameter in integrable systems and KZB equations”, JHEP, 10 (2014), 109, 29 pp., arXiv: ; А. М. Левин, М. А. Ольшанецкий, А. В. Зотов, “Квантовые $R$-матрицы Бакстера–Белавина и многомерные пары Лакса для уравнения Пенлеве VI”, ТМФ, 184:1 (2015), 41–56, arXiv: hep-th/1408.62461501.07351 | DOI | MR | DOI | DOI | MR
[18] A. Levin, M. Olshanetsky, A. Zotov, “Relativistic classical integrable tops and quantum $R$-matrices”, JHEP, 07 (2014), 012, 39 pp., arXiv: ; T. Krasnov, A. Zotov, “Trigonometric integrable tops from solutions of associative Yang–Baxter equation”, Ann. Henri Poincaré, 20:8 (2019), 2671–2697, arXiv: ; G. Aminov, S. Arthamonov, A. Smirnov, A. Zotov, “Rational top and its classical $r$-matrix”, J. Phys. A: Math. Theor., 47:30 (2014), 305207, 19 pp., arXiv: 1405.75231812.042091402.3189 | DOI | DOI | MR | DOI | MR
[19] A. Grekov, I. Sechin, A. Zotov, “Generalized model of interacting integrable tops”, JHEP, 2019:10 (2019), 81, 33 pp., arXiv: ; И. А. Сечин, А. В. Зотов, “${\rm GL}_{NM}$-значная квантовая динамическая $R$-матрица, построенная по решению ассоциативного уравнения Янга–Бакстера”, УМН, 74:4(448) (2019), 189–190, arXiv: ; A. Grekov, A. Zotov, “On $R$-matrix valued Lax pairs for Calogero–Moser models”, J. Phys. A: Math. Theor., 51:31 (2018), 315202, 26 pp., arXiv: 1905.078201905.087241801.00245 | DOI | MR | DOI | DOI | MR | DOI | MR
[20] V. I. Inozemtsev, “The finite Toda lattices”, Commun. Math. Phys., 121:4 (1989), 629–638 ; А. В. Зотов, Ю. Б. Черняков, “Интегрируемые многочастичные системы, полученные с использованием предела Иноземцева”, ТМФ, 129:2 (2001), 258–277, arXiv: hep-th/0102069 | DOI | MR | DOI | DOI | MR | Zbl
[21] A. V. Zotov, “$1+1$ Gaudin Model”, SIGMA, 7 (2011), 067, 26 pp., arXiv: 1012.1072 | MR
[22] S. Fomin, A. N. Kirillov, “Quadratic algebras, Dunkl elements, and Schubert calculus”, Progress in Mathematics, 172, eds. J.-L. Brylinski, R. Brylinski, V. Nistor, B. Tsygan, P. Xu, Birkhäuser, Boston, MA, 1999, 147–182 ; A. Polishchuk, “Classical Yang–Baxter equation and the $A_\infty$-constraint”, Adv. Math., 168:1 (2002), 56–95 | MR | Zbl | DOI | MR
[23] A. Levin, M. Olshanetsky, A. Zotov, “Noncommutative extensions of elliptic integrable Euler-Arnold tops and Painleve VI equation”, J. Phys. A: Math. Theor., 49:39 (2016), 395202, arXiv: 1603.06101 | DOI | MR
[24] I. Sechin, A. Zotov, “$R$-matrix-valued Lax pairs and long-range spin chains”, Phys. Lett. B, 781 (2018), 1–7, arXiv: 1801.08908 | DOI | MR
[25] A. M. Levin, M. A. Olshanetsky, “Hierarchies of isomonodromic deformations and Hitchin systems”, Amer. Math. Soc. Transl. Ser. 2, 191 (1999), 223–262, AMS, Providence, RI ; K. Takasaki, “Gaudin model, KZ equation, and isomonodromic problem on torus”, Lett. Math. Phys., 44:2 (1998), 143–156, arXiv: ; Yu. Chernyakov, A. M. Levin, M. Olshanetsky, A. Zotov, “Elliptic Schlesinger system and Painlevé VI”, J. Phys. A: Math. Gen., 39:39 (2006), 12083–12101, arXiv: hep-th/9711058nlin/0602043 | MR | Zbl | DOI | MR | DOI | MR
[26] A. M. Levin, M. A. Olshanetsky, “Painlevé–Calogero correspondence”, Calogero–Moser–Sutherland Models (Montréal, Quebec, Canada, 10–15 March, 1997), CRM Series in Mathematical Physics, eds. J. F. van Diejen, L. Vinet, Springer, New York, 2000, 313–332, arXiv: alg-geom/9706010 | MR
[27] A. M. Levin, M. A. Olshanetskii, A. V. Zotov, “Klassifikatsiya izomonodromnykh zadach na ellipticheskikh krivykh”, UMN, 69:1(415) (2014), 39–124, arXiv: 1311.4498 | DOI | DOI | MR | Zbl
[28] A. Veil, Ellipticheskie funktsii po Eizenshteinu i Kronekeru, Mir, M., 1978 ; Д. Мамфорд, Лекции о тэта-функциях, Мир, М., 1998 | MR | MR | Zbl | MR | MR | Zbl