Matrix extension of multidimensional dispersionless integrable hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 3-15
Voir la notice de l'article provenant de la source Math-Net.Ru
We consistently develop a recently proposed scheme of matrix extensions of dispersionless integrable systems in the general case of multidimensional hierarchies, concentrating on the case of dimension $d\geqslant 4$. We present extended Lax pairs, Lax–Sato equations, matrix equations on the background of vector fields, and the dressing scheme. Reductions, the construction of solutions, and connections to geometry are discussed. We separately consider the case of an Abelian extension, for which the Riemann–Hilbert equations of the dressing scheme are explicitly solvable and give an analogue of the Penrose formula in curved space.
Keywords:
dispersionless integrable system, gauge field, self-dual Yang–Mills equations.
@article{TMF_2021_209_1_a0,
author = {L. V. Bogdanov},
title = {Matrix extension of multidimensional dispersionless integrable hierarchies},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--15},
publisher = {mathdoc},
volume = {209},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a0/}
}
L. V. Bogdanov. Matrix extension of multidimensional dispersionless integrable hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a0/