@article{TMF_2021_208_3_a9,
author = {I. G. Salako and D. R. Boko and G. F. Pomalegni and M. Z. Arouko},
title = {Study on anisotropic strange stars in {Rastall} gravity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {522--543},
year = {2021},
volume = {208},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a9/}
}
TY - JOUR AU - I. G. Salako AU - D. R. Boko AU - G. F. Pomalegni AU - M. Z. Arouko TI - Study on anisotropic strange stars in Rastall gravity JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 522 EP - 543 VL - 208 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a9/ LA - ru ID - TMF_2021_208_3_a9 ER -
I. G. Salako; D. R. Boko; G. F. Pomalegni; M. Z. Arouko. Study on anisotropic strange stars in Rastall gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 522-543. http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a9/
[1] A. R. Bodmer, “Collapsed nuclei”, Phys. Rev. D, 4:6 (1971), 1601–1606 | DOI
[2] E. Witten, “Cosmic separation of phases”, Phys. Rev. D, 30:2 (1984), 272–285 | DOI
[3] W. Baade, F. Zwicky, “Remarks on super-novae and cosmic rays”, Phys. Rev., 46:1 (1934), 76–77 | DOI
[4] J. M. Lattimer, M. Prakash, “The physics of neutron stars”, Science, 304:5670 (2004), 536–542, arXiv: astro-ph/0405262 | DOI
[5] A. W. Steiner, M. Prakash, J. M. Lattimer, P. J. Ellis, “Isospin asymmetry in nuclei and neutron stars”, Phys. Rep., 411:6 (2005), 325–375, arXiv: nucl-th/0410066 | DOI
[6] I. Bombaci, I. Parenti, I. Vidaña, “Quark deconfinement and implications for the radius and the limiting mass of compact stars”, Astrophys. J., 614:1 (2004), 314–325, arXiv: astro-ph/0402404 | DOI
[7] J. Staff, R. Ouyed, M. Bagchi, “A three-stage model for the inner engine of gamma-ray bursts: prompt emission and early afterglow”, Astrophys. J., 667:1 (2007), 340–350, arXiv: astro-ph/0608470 | DOI
[8] M. Herzog, F. K. Röpke, “Three-dimensional hydrodynamic simulations of the combustion of a neutron star into a quark star”, Phys. Rev. D, 84:8 (2011), 083002, 13 pp., arXiv: 1109.0539 | DOI
[9] K. Schwarzschild, “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 7 (1916), 189–196
[10] R. Ruderman, “Pulsars: structure and dynamics”, Ann. Rev. Astron. Astrophys., 10 (1972), 427–476 | DOI
[11] L. Herrera, N. O. Santos, “Local anisotropy in self-gravitating systems”, Phys. Rep., 286:2 (1997), 53–130 | DOI | MR
[12] A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, R. A. Collins, “Observation of a rapidly pulsating radio source”, Nature, 217:5130 (1968), 709–713 | DOI
[13] S. M. Hossein, F. Rahaman, J. Naskar, M. Kalam, S. Ray, “Anisotropic compact stars with variable cosmological constant”, Internat. J. Modern Phys. D, 21:13 (2012), 1250088, 14 pp., arXiv: 1204.3558 | DOI | Zbl
[14] M. Kalam, F. Rahaman, S. Molla, S. M. Hossein, “Anisotropic quintessence stars”, Astrophys. Space Sci., 349:2 (2014), 865–871 | DOI
[15] K. D. Krori, J. Barua, “A singularity-free solution for a charged fluid sphere in general relativity”, J. Phys. A: Math. Gen., 8:4 (1975), 508–511 | DOI
[16] M. Kalam, F. Rahaman, S. Ray, Sk. M. Hossein, I. Karar, J. Naskar, “Anisotropic strange star with de Sitter spacetime”, Eur. Phys. J. C, 72:12 (2012), 2248, 7 pp., arXiv: 1201.5234 | DOI
[17] B. C. Paul, R. Deb, “Relativistic solutions of anisotropic compact objects”, Astrophys. Space Sci., 354:2 (2014), 421–430 | DOI
[18] K. S. Cheng, Z. G. Dai, T. Lu, “Strange stars and related astrophysical phenomena”, Inernat. J. Modern Phys. D, 7:2 (1998), 139–176 | DOI
[19] P. Bhar, “Singularity-free anisotropic strange quintessence star”, Astrophys. Space Sci., 356:2 (2015), 309–318 | DOI
[20] G. Abbas, M. Zubair, G. Mustafa, “Anisotropic strange quintessence stars in $f(R)$ gravity”, Astrophys. Space Sci., 358:2 (2015), 26, 11 pp. | DOI
[21] L. Lagerkvist, F. Samuelsson, The MIT bag-model: Glueball mass spectrum using the MIT bag-model, Bachelor Thesis in Theoretical Physics, Royal Institute of Technology (KTH), School of Engineering Sciences (SCI), Stockholm, 2015
[22] F. Rahaman, K. Chakraborty, P. K. F. Kuhfittig, G. C. Shit, M. Rahman, “A new deterministic model of strange stars”, Eur. Phys. J. C, 74:10 (2014), 3126, 5 pp. | DOI
[23] J. D. V. Arbañil, M. Malheiro, “Radial stability of anisotropic strange quark stars”, J. Cosmol. Astropart. Phys., 2016:11 (2016), 012, 17 pp. | DOI | MR
[24] M. H. Murad, “Some analytical models of anisotropic strange stars”, Astrophys. Space Sci., 361:1 (2016), 20, 13 pp. | DOI | MR
[25] M. K. Mak, T. Harko, “Quark stars admitting a one-parameter group of conformal motions”, Internat. J. Modern Phys. D, 13:1 (2004), 149–156 | DOI
[26] G. Abbas, “Cardy–Verlinde formula of non-commutative Schwarzschild black hole”, Adv. High Energy Phys., 2014 (2014), 306256, 4 pp. | DOI
[27] G. Abbas, “Collapse and expansion of anisotropic plane symmetric source”, Astrophys. Space Sci., 350:1 (2014), 307–311 | DOI
[28] G. Abbas, U. Sabiullah, “Geodesic study of regular Hayward black hole”, Astrophys. Space Sci., 352:2 (2014), 769–774 | DOI
[29] G. Abbas, “Phantom energy accretion onto a black hole in Hor̆ava–Lifshitz gravity”, Sci. China Phys. Mech. Astron., 57:4 (2014), 604–607 | DOI
[30] G. Abbas, A. Kanwal, M. Zubair, “Anisotropic compact stars in $f(T)$ gravity”, Astrophys. Space Sci., 357:2 (2015), 109, 8 pp. | DOI
[31] G. Abbas, S. Nazeer, M. A. Meraj, “Cylindrically symmetric models of anisotropic compact objects”, Astrophys. Space Sci., 354:2 (2014), 449–455 | DOI
[32] G. Abbas, D. Momeni, M. Aamir Ali, R. Myrzakulov, S. Qaisar, “Anisotropic compact stars in $f(G)$ gravity”, Astrophys. Space Sci., 357:2 (2015), 158, 11 pp. | DOI
[33] D. Deb, S. Ghosh, S. K. Maurya, M. Khlopov, S. Ray, “Anisotropic compact stars in $f(T)$ gravity under Karmarkar condition”, Tech Vistas, 1:1 (2018), 1–20, arXiv: 1811.11797
[34] A. Das, S. Ghosh, D. Deb, F. Rahaman, S. Ray, “Study of gravastars under $f(\mathbb{T})$ gravity”, Nucl. Phys. B, 954 (2020), 114986, 17 pp. | DOI | MR
[35] S. Nojiri, S. D. Odintsov, “Modified Gauss–Bonnet theory as gravitational alternative for dark energy”, Phys. Lett. B, 631:1–2 (2005), 1–6, arXiv: hep-th/0508049 | DOI | MR
[36] G. Abbas, S. Qaisar, A. Jawad, “Strange stars in $f(T)$ gravity with MIT bag model”, Astrophys. Space Sci., 359:2 (2015), 57, 10 pp. | DOI
[37] A. M. Oliveira, H. E. S. Velten, J. C. Fabris, L. Casarini, “Neutron stars in Rastall gravity”, Phys. Rev. D, 92:4 (2015), 044020, 6 pp., arXiv: 1506.00567 | DOI
[38] G. Abbas, M. R. Shahzad, “A new model of quintessence compact stars in the Rastall theory of gravity”, Eur. Phys. J. A, 54:12 (2018), 211, 11 pp. | DOI
[39] G. Abbas, M. R. Shahzad, “Models of anisotropic compact stars in the Rastall theory of gravity”, Astrophys. Space Sci., 364:3 (2019), 50, 12 pp. | DOI | MR
[40] C. E. Mota, L. C. N. Santos, G. Grams, F. M. da Silva, D. P. Menezes, “Combined Rastall and rainbow theories of gravity with applications to neutron stars”, Phys. Rev. D, 100:2 (2019), 024043, 9 pp., arXiv: 1905.01250 | DOI | MR
[41] C. E. Mota, L. C. N. Santos, F. M. da Silva, C. V. Flores, T. J. N. da Silva, D. P. Menezes, Anisotropic compact stars in Rastall–Rainbow gravity, arXiv: 1911.03208
[42] R. Rizaldy, A. Sulaksono, “Deformation of a magnetized quark star in Rastall gravity”, J. Phys.: Conf. Ser., 1321:2 (2019), 022016, 7 pp. | DOI
[43] M. R. Shahzad, G. Abbas, “Strange stars with MIT bag model in the Rastall theory of gravity”, Internat. J. Geom. Meth. Modern Phys., 16:9 (2019), 1950132, 22 pp. | DOI | MR
[44] H. Nazar, G. Abbas, “Charged anisotropic collapsing stars with heat flux in $f(R)$ gravity”, Chinese J. Phys., 63 (2020), 436–447 | DOI | MR
[45] M. Pace, J. L. Said, “Quark stars in $f(T,\mathcal T)$-gravity”, Eur. Phys. J. C, 77:2 (2017), 62, 5 pp., arXiv: 1701.04761 | DOI
[46] P. Rastall, “Generalization of the Einstein theory”, Phys. Rev. D, 6:12 (1972), 3357–3359 | DOI | MR
[47] P. Rastall, “A theory of gravity”, Canad. J. Phys., 54:1 (1976), 66–75 | DOI | MR
[48] A. S. Al-Rawaf, M. O. Taha, “A resolution of the cosmological age puzzle”, Phys. Lett. B, 366:1–4 (1996), 69–71 | DOI | MR
[49] A. S. Al-Rawaf, M. O. Taha, “Cosmology of general relativity without energy-momentum conservation”, Gen. Rel. Grav., 28:8 (1996), 935–952 | DOI | MR
[50] L. L. Smalley, “Variational principle for a prototype Rastall theory of gravitation”, Nuovo Cim. B, 80:1 (1984), 42–48 | DOI
[51] C. E. M. Batista, J. C. Fabris, M. H. Daouda, “Testing the Rastall's theory using matter power spectrum”, Nuovo Cim. B, 125:8 (2010), 957–968 | DOI
[52] J. C. Fabris, T. C. C. Guio, M. H. Daouda, O. F. Piattella, “Scalar models for the generalized Chaplygin gas and the structure formation constraints”, Gravit. Cosmol., 17:3 (2011), 259–271 | DOI
[53] J. C. Fabris, M. H. Daouda, O. F. Piattella, “Note on the evolution of the gravitational potential in Rastall scalar field theories”, Phys. Lett. B, 711:3–4 (2012), 232–237, arXiv: 1109.2096 | DOI
[54] M. Capone, V. F. Cardone, M. L. Ruggiero, “Accelerating cosmology in Rastall's theory”, Nuovo Cim. B, 125:10 (2011), 1133–1142 | DOI
[55] R. C. Tolman, “Static solutions of Einstein's field equations for spheres of fluid”, Phys. Rev., 55:4 (1939), 364–373 | DOI
[56] J. R. Oppenheimer, G. M. Volkoff, “On massive neutron cores”, Phys. Rev., 55:4 (1939), 374–381 | DOI
[57] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, V. F. Weisskopf, “New extended model of hadrons”, Phys. Rev. D, 9:12 (1974), 3471–3495 | DOI | MR
[58] D. Deb, S. V. Ketov, M. Khlopov, S. Ray, “Study on charged strange stars in $f(R,T)$ gravity”, J. Cosmol. Astropart. Phys., 2019:10 (2019), 070, 27 pp. | DOI | MR
[59] J. L. Zdunik, T. Bulik, W. Kluźniak, P. Haensel, D. Gondek-Rosińska, “On the mass of moderately rotating strange stars in the MIT bag model and LMXBs”, Astron. Astrophys., 359:1 (2000), 143–147, arXiv: astro-ph/0004278
[60] C. Maieron, M. Baldo, G. F. Burgio, H.-J. Schulze, “Hybrid stars with the color dielectric and the MIT bag models”, Phys. Rev. D, 70:4 (2004), 043010, 11 pp., arXiv: nucl-th/0404089 | DOI
[61] O. E. Nicotra, M. Baldo, G. F. Burgio, H.-J. Schulze, “Hybrid protoneutron stars with the MIT bag model”, Phys. Rev. D, 74:12 (2006), 123001, 11 pp., arXiv: astro-ph/0608021 | DOI
[62] T. Bao, G.-Z. Liu, M.-F. Zhu, “Properties of hybrid stars in an extended MIT bag model”, Chinese Phys. C, 33:5 (2009), 340–344 | DOI
[63] S. T. Uechi, H. Uechi, Hardon-quark hybrid stars constructed by the nonlinear $\sigma$-$\omega$-$\rho$ mean-field model and MIT-bag model, arXiv: 1003.4815
[64] A. A. Isayev, “Stability of magnetized strange quark matter in the MIT bag model with a density dependent bag pressure”, Phys. Rev. C, 91:1 (2015), 015208, 6 pp., arXiv: 1501.07772 | DOI
[65] P. H. G. Cardoso, T. N. da Silva, A. Deppman, D. P. Menezes, “Quark matter revisited with non-extensive MIT bag model”, Eur. Phys. J. A, 53:10 (2017), 191, 8 pp., arXiv: 1706.02183 | DOI
[66] S. Joshi, S. Sau, S. Sanyal, Quark cores in extensions of the MIT bag model, arXiv: 2002.07647
[67] M. K. Mak, T. Harko, “Anisotropic stars in general relativity”, Proc. Roy. Soc. London Ser. A, 459:2030 (2003), 393–408, arXiv: gr-qc/0110103 | DOI | MR
[68] P. H. R. S. Moraes, R. A. C. Correa, R. V. Lobato, “Analytical general solutions for static wormholes in $f(R,T)$ gravity”, J. Cosmol. Astropart. Phys., 2017:7 (2017), 029, 12 pp. | DOI | MR
[69] D. Deb, F. Rahaman, S. Ray, B. K. Guha, “Strange stars in $f(R,\mathcal T)$ gravity”, J. Cosmol. Astropart. Phys., 2018:03 (2018), 044, 22 pp. | DOI
[70] S. K. Maurya, Y. K. Gupta, S. Ray, D. Deb, “Generalised model for anisotropic compact stars”, Eur. Phys. J. C, 76:12 (2016), 693, 12 pp., arXiv: 1607.05582 | DOI
[71] J. P. de Leon, “Limiting configurations allowed by the energy conditions”, Gen. Rel. Grav., 25:11 (1993), 1123–1137 | DOI | MR
[72] L. Herrera, “Cracking of self-gravitating compact objects”, Phys. Lett. A, 165:3 (1992), 206–210 | DOI
[73] H. Abreu, H. Hernández, L. A. Núñez, “Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects”, Class. Quantum Grav., 24:18 (2007), 4631–4646, arXiv: 0706.3452 | DOI | MR
[74] S. Chandrasekhar, “The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity”, Astrophys. J., 140 (1964), 417–433 | DOI | MR
[75] H. Heintzmann, W. Hillebrandt, “Neutron stars with an anisotropic equation of state: mass, redshift and stability”, Astron. Astrophys., 38:1 (1975), 51–55
[76] W. Hillebrandt, K. O. Steinmetz, “Anisotropic neutron star models: stability against radial and nonradial pulsations”, Astron. Astrophys., 53:2 (1976), 283–287
[77] I. Bombaci, “The maximum mass of a neutron star”, Astron. Astrophys., 305 (1996), 871–877
[78] S. Biswas, D. Shee, S. Ray, B. K. Guha, “Anisotropic strange star with Tolman–Kuchowicz metric under $f(R,T)$ gravity”, Eur. Phys. J. C, 80:2 (2020), 175, 15 pp., arXiv: 2006.01619 | DOI
[79] H. A. Buchdahl, “General relativistic fluid spheres”, Phys. Rev., 116:4 (1959), 1027–1034 | DOI | MR
[80] H. Andréasson, “Sharp bounds on the critical stability radius for relativistic charged spheres”, Commun. Math. Phys., 288:2 (2009), 715–730, arXiv: 0804.1882 | DOI | MR
[81] H. Bondi, “The contraction of gravitating spheres”, Proc. Roy. Soc. London Ser. A, 281:1384 (1964), 39–48 | DOI | MR
[82] R. Chan, L. Herrera, N. O. Santos, “Dynamical instability for radiating anisotropic collapse”, Mon. Not. Roy. Astron. Soc., 265:3 (1993), 533–544 | DOI
[83] D. E. Barraco, V. H. Hamity, “Maximum mass of a spherically symmetric isotropic star”, Phys. Rev. D., 65:12 (2002), 124028, 5 pp. | DOI
[84] C. G. Böhmer, T. Harko, “Bounds on the basic physical parameters for anisotropic compact general relativistic objects”, Class. Quantum Grav., 23:22 (2006), 6479–6491, arXiv: gr-qc/0609061 | DOI | MR
[85] B. V. Ivanov, “Maximum bounds on the surface redshift of anisotropic stars”, Phys. Rev. D, 65:10 (2002), 104011, 4 pp., arXiv: gr-qc/0201090 | DOI
[86] A. Aziz, S. Ray, F. Rahaman, M. Khlopov, B. K. Guha, “Constraining values of bag constant for strange star candidates”, Internat. J. Modern Phys. D, 28:13 (2019), 1941006, 22 pp., arXiv: 1906.00063 | DOI
[87] N. Itoh, “Hydrostatic equilibrium of hypothetical quark stars”, Prog. Theor. Phys., 44:1 (1970), 291–292 | DOI
[88] P. Haensel, J. L. Zdunik, R. Schaefer, “Strange quark stars”, Astron. Astrophys., 160:1 (1986), 121–128
[89] C. Alcock, E. Farhi, A. Olinto, “Strange stars”, Astrophys. J., 310:1 (1986), 261–272 | DOI
[90] G. Pagliara, M. Herzog, F. K. Röpke, “Combustion of a neutron star into a strange quark star: The neutrino signal”, Phys. Rev. D, 87:10 (2013), 103007, 8 pp., arXiv: 1304.6884 | DOI
[91] A. Bauswein, H.-T. Janka, R. Oechslin, G. Pagliara, I. Sagert, J. Schaffner-Bielich, M. M. Hohle, R. Neuhäuser, “Mass ejection by strange star mergers and observational implications”, Phys. Rev. Lett., 103:1 (2009), 011101, 4 pp., arXiv: 0812.4248 | DOI
[92] A. Bauswein, R. Oechslin, H.-T. Janka, “Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements”, Phys. Rev. D, 81:2 (2010), 024012, 21 pp., arXiv: 0910.5169 | DOI
[93] P. J. Llanes-Estrada, “Constraining gravity with hadron physics: neutron stars, modified gravity and gravitational waves”, EPJ Web Conf., 137 (2017), 01013, 14 pp. | DOI
[94] H. Motohashi, M. Minamitsuji, “General Relativity solutions in modified gravity”, Phys. Lett. B, 781 (2018), 728–734, arXiv: 1804.01731 | DOI