Photon structure of stationary spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 495-521 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is devoted to the analysis of photon surfaces and photon regions in the stationary Plebański–Demiański space–time, including black holes, naked singularities, and wormholes, with rotation, the electric or magnetic charge, the NUT parameter, the acceleration parameter, and the cosmological constant taken into account. We construct a theory of partially umbilic hypersurfaces, which allows us to describe the photon structure of space–time without resorting to the analysis of geodesic equations. We completely classify photon surfaces for various values of the parameters, including critical ones at which a qualitative change in the photon structure occurs. The results are visualized in the form of diagrams, which allows compactly presenting the information needed to understand strong gravitational lensing and gravitational shadows.
Mots-clés : photon surface
Keywords: photon region, gravitational lensing, black hole shadow.
@article{TMF_2021_208_3_a8,
     author = {K. V. Kobialko and D. V. Gal'tsov},
     title = {Photon structure of stationary spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {495--521},
     year = {2021},
     volume = {208},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a8/}
}
TY  - JOUR
AU  - K. V. Kobialko
AU  - D. V. Gal'tsov
TI  - Photon structure of stationary spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 495
EP  - 521
VL  - 208
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a8/
LA  - ru
ID  - TMF_2021_208_3_a8
ER  - 
%0 Journal Article
%A K. V. Kobialko
%A D. V. Gal'tsov
%T Photon structure of stationary spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 495-521
%V 208
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a8/
%G ru
%F TMF_2021_208_3_a8
K. V. Kobialko; D. V. Gal'tsov. Photon structure of stationary spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 495-521. http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a8/

[1] K. Akiyama, A. Alberdi, W. Alef et al. [Event Horizon Telescope Collab.], “First M87 event horizon telescope results. VI. The shadow and mass of the central black hole”, Astrophys. J. Lett., 875:1 (2019), L6, 44 pp., arXiv: 1906.11243 | DOI

[2] P. V. P. Cunha, C. A. R. Herdeiro, “Shadows and strong gravitational lensing: a brief review”, Gen. Rel. Grav., 50:4 (2018), 42, 27 pp., arXiv: 1801.00860 | DOI | MR

[3] K. S. Virbhadra, G. F. R. Ellis, “Schwarzschild black hole lensing”, Phys. Rev. D, 62 (2000), 084003, 8 pp., arXiv: astro-ph/9904193 | DOI | MR

[4] K. S. Virbhadra, G. F. R. Ellis, “Gravitational lensing by naked singularities”, Phys. Rev. D, 65:10 (2002), 103004, 10 pp. | DOI | MR

[5] V. Perlick, “Gravitational lensing from a spacetime perspective”, Living Rev. Rel., 7 (2004), 9, 117 pp. | DOI

[6] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, H. F. Runarsson, “Shadows of Kerr black holes with scalar hair”, Phys. Rev. Lett., 115:21 (2015), 211102, 5 pp. | DOI

[7] A. Bohn, W. Throwe, F. Hébert, K. Henriksson, D. Bunandar, M. A. Scheel, N. W. Taylor, “What does a binary black hole merger look like?”, Class. Quantum Grav., 32:6 (2015), 065002, 17 pp., arXiv: 1410.7775 | DOI

[8] P. V. P. Cunha, J. A. Font, C. Herdeiro, E. Radu, N. Sanchis-Gual, M. Zilhão, “Lensing and dynamics of ultracompact bosonic stars”, Phys. Rev. D, 96:10 (2017), 104040, 13 pp., arXiv: 1709.06118 | DOI

[9] A. B. Abdikamalov, A. A. Abdujabbarov, D. Ayzenberg, D. Malafarina, C. Bambi, B. Ahmedov, “Black hole mimicker hiding in the shadow: optical properties of the $\gamma$ metric”, Phys. Rev. D, 100:2 (2019), 024014, 12 pp. | DOI

[10] A. de Vries, “The apparent shape of a rotating charged black hole, closed photon orbits and the bifurcation set $A_4$”, Class. Quantum Grav., 17:1 (2000), 123–144 | DOI

[11] A. Abdujabbarov, F. Atamurotov, Y. Kucukakca, B. Ahmedov, U. Camci, “Shadow of Kerr–Taub–NUT black hole”, Astrophys. Space Sci., 344 (2013), 429–435 | DOI

[12] S.-W. Wei, Y.-X. Liu, “Observing the shadow of Einstein–Maxwell–Dilaton–Axion black hole”, JCAP, 11 (2013), 063, 17 pp., arXiv: 1311.4251 | DOI

[13] F. Atamurotov, A. Abdujabbarov, B. Ahmedov, “Shadow of rotating non-Kerr black hole”, Phys. Rev. D, 88:6 (2013), 064004, 11 pp. | DOI

[14] R. Takahashi, “Black hole shadows of charged spinning black holes”, Publ. Astron. Soc. Japan, 57:2 (2005), 273–277, arXiv: astro-ph/0505316 | DOI

[15] C. Bambi, K. Freese, “Apparent shape of super-spinning black holes”, Phys. Rev. D, 79:4 (2009), 043002, 7 pp., arXiv: 0812.1328 | DOI | MR

[16] L. Amarilla, E. F. Eiroa, G. Giribet, “Null geodesics and shadow of a rotating black hole in extended Chern–Simons modified gravity”, Phys. Rev. D, 81:12 (2010), 124045, 8 pp., arXiv: 1005.0607 | DOI | MR

[17] L. Amarilla, E. F. Eiroa, “Shadow of a Kaluza–Klein rotating dilaton black hole”, Phys. Rev. D, 87:4 (2013), 044057, 7 pp., arXiv: 1301.0532 | DOI

[18] R. Shaikh, P. Kocherlakota, R. Narayan, P. S. Joshi, “Shadows of spherically symmetric black holes and naked singularities”, Mon. Not. Roy. Astron. Soc., 482:1 (2019), 52–64, arXiv: 1802.08060 | DOI

[19] E. Teo, “Spherical photon orbits around a Kerr black hole”, Gen. Rel. Grav., 35:11 (2003), 1909–1926 | DOI | MR

[20] E. Teo, “Spherical orbits around a Kerr black hole”, Gen. Rel. Grav., 53:1 (2021), 10, 32 pp. | DOI

[21] C.-M. Claudel, K. S. Virbhadra, G. F. R. Ellis, “The geometry of photon surfaces”, J. Math. Phys., 42:2 (2001), 818–838, arXiv: gr-qc/0005050 | DOI

[22] H. Yoshino, K. Izumi, T. Shiromizu, Y. Tomikawa, “Transversely trapping surfaces: dynamical version”, Progr. Theor. Exper. Phys., 2020, no. 2, 023E02, 34 pp. | DOI | MR

[23] H. Yoshino, K. Izumi, T. Shiromizu, Y. Tomikawa, “Formation of dynamically transversely trapping surfaces and the stretched hoop conjecture”, Progr. Theor. Exper. Phys., 2020:5 (2020), 053E01, 24 pp., arXiv: 1911.09893 | DOI | MR

[24] H. Yoshino, K. Izumi, T. Shiromizu, Y. Tomikawa, “Extension of photon surfaces and their area: static and stationary spacetimes”, Progr. Theor. Exper. Phys., 2017:6 (2017), 063E01, 23 pp., arXiv: 1704.04637 | DOI | MR

[25] K. V. Kobialko, D. V. Gal'tsov, “Photon regions and umbilic conditions in stationary axisymmetric spacetimes: photon regions”, Eur. Phys. J. C, 80:6 (2020), 527, 16 pp., arXiv: 2002.04280 | DOI

[26] A. Grenzebach, V. Perlick, C. Lammerzahl, “Photon regions and shadows of Kerr–Newman–NUT black holes with a cosmological constant”, Phys. Rev. D, 89:12 (2014), 124004, 12 pp., arXiv: 1403.5234 | DOI

[27] A. Grenzebach, V. Perlick, C. Lämmerzahl, “Photon regions and shadows of accelerated black holes”, Internat. J. Modern Phys. D, 24:9 (2015), 1542024, 22 pp., arXiv: 1503.03036 | DOI | MR

[28] D. Charbulák, Z. Stuchlik, “Spherical photon orbits in the field of Kerr naked singularities”, Eur. Phys. J. C, 78:11 (2018), 879, 25 pp., arXiv: 1811.02648 | DOI

[29] D. V. Gal'tsov, K. V. Kobialko, “Photon trapping in static axially symmetric spacetime”, Phys. Rev. D, 100:10 (2019), 104005, 20 pp., arXiv: 1906.12065 | DOI

[30] D. V. Gal'tsov, K. V. Kobialko, “Completing characterization of photon orbits in Kerr and Kerr–Newman metrics”, Phys. Rev. D, 99:8 (2019), 084043, 18 pp., arXiv: 1901.02785 | DOI | MR

[31] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, “Fundamental photon orbits: black hole shadows and spacetime instabilities”, Phys. Rev. D, 96:2 (2017), 024039, 6 pp., arXiv: 1705.05461 | DOI

[32] G. Pappas, K. Glampedakis, On the connection of spacetime separability and spherical photon orbits, arXiv: 1806.04091

[33] K. Glampedakis, G. Pappas, “Modification of photon trapping orbits as a diagnostic of non-Kerr spacetimes”, Phys. Rev. D, 99:12 (2019), 124041, 25 pp., arXiv: 1806.09333 | DOI | MR

[34] G. Gyulchev, P. Nedkova, V. Tinchev, S. Yazadjiev, “On the shadow of rotating traversable wormholes”, Eur. Phys. J. C, 78:7 (2018), 544, 12 pp., arXiv: 1805.11591 | DOI

[35] M. Cvetic, G. W. Gibbons, C. N. Pope, “Photon spheres and sonic horizons in black holes from supergravity and other theories”, Phys. Rev. D, 94:10 (2016), 106005, 23 pp., arXiv: 1608.02202 | DOI | MR

[36] V. Cardoso, L. C. B. Crispino, C. F. B. Macedo, H. Okawa, P. Pani, “Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects”, Phys. Rev. D, 90:4 (2014), 044069, 10 pp., arXiv: 1406.5510 | DOI

[37] S. R. Dolan, J. O. Shipley, “Stable photon orbits in stationary axisymmetric electrovacuum spacetimes”, Phys. Rev. D, 94:4 (2016), 044038, 8 pp., arXiv: 1605.07193 | DOI

[38] J. Keir, “Stability, instability, canonical energy and charged black holes”, Class. Quantum Grav., 31:3 (2014), 035014, 37 pp., arXiv: 1306.6087 | DOI | MR

[39] P. V. P. Cunha, E. Berti, C. A. R. Herdeiro, “Light-ring stability for ultracompact objects”, Phys. Rev. Lett., 119:25 (2017), 251102, 8 pp., arXiv: 1708.04211 | DOI | MR

[40] Z.-Y. Tang, Y. C. Ong, B. Wang, “Lux in obscuro II: Photon orbits of extremal ads black holes revisited”, Class. Quantum Grav., 34:24 (2017), 245006, 21 pp., arXiv: 1705.09633 | DOI | MR

[41] C. Cederbaum, G. J. Galloway, “Uniqueness of photon spheres in electro-vacuum spacetimes”, Class. Quantum Grav., 33:7 (2016), 075006, 16 pp., arXiv: 1508.00355 | DOI | MR

[42] S. S. Yazadjiev, “Uniqueness of the static spacetimes with a photon sphere in Einstein-scalar field theory”, Phys. Rev. D, 91:12 (2015), 123013, 7 pp., arXiv: 1501.06837 | DOI | MR

[43] S. Yazadjiev, B. Lazov, “Uniqueness of the static Einstein–Maxwell spacetimes with a photon sphere”, Class. Quantum Grav., 32:16 (2015), 165021, 12 pp., arXiv: 1503.06828 | DOI | MR

[44] S. Yazadjiev, B. Lazov, “Classification of the static and asymptotically flat Einstein–Maxwell-dilaton spacetimes with a photon sphere”, Phys. Rev. D, 93:8 (2016), 083002, 11 pp., arXiv: 1510.04022 | DOI | MR

[45] M. Rogatko, “Uniqueness of photon sphere for Einstein–Maxwell-dilaton black holes with arbitrary coupling constant”, Phys. Rev. D, 93:6 (2016), 064003, 7 pp., arXiv: 1602.03270 | DOI | MR

[46] C. Cederbaum, “Uniqueness of photon spheres in static vacuum asymptotically flat spacetimes”, Complex Analysis and Dynamical Systems VI. Part 1: PDE, Differential Geometry, Radon Transform (Nahariya, Israel, May 19–24, 2013), Contemporary Mathematics, 653, eds. M. L. Agranovsky, M. Ben-Artzi, G. Galloway, L. Karp, D. Khavinson, S. Reich, G. Weinstein, L. Zalcman, AMS, Providence, RI, 2015, 51–64, arXiv: 1406.5475 | DOI | MR

[47] T. Shiromizu, Y. Tomikawa, K. Izumi, H. Yoshino, “Area bound for a surface in a strong gravity region”, Progr. Theor. Exper. Phys., 2017:3 (2017), 033E01, 6 pp., arXiv: 1701.00564 | DOI | MR

[48] X.-H. Feng, H. Lü, “On the size of rotating black holes”, Eur. Phys. J. C, 80:6 (2020), 551, 16 pp., arXiv: 1911.12368 | DOI

[49] R.-Q. Yang, H. Lü, “Universal bounds on the size of a black hole”, Eur. Phys. J. C, 80:9 (2020), 949, 16 pp., arXiv: 2001.00027 | DOI

[50] G. Huisken, T. Ilmanen, “The inverse mean curvature flow and the Riemannian Penrose inequality”, J. Differ. Geom., 59:3 (2001), 353–437 | DOI | MR

[51] Y. Koga, T. Igata, K. Nakashi, “Photon surfaces in less symmetric spacetimes”, Phys. Rev. D, 103:4 (2021), 044003, 11 pp., arXiv: 2011.10234 | DOI

[52] K. Kobialko, I. Bogush, D. Gal'tsov, Killing tensors and photon surfaces in foliated spacetimes, arXiv: 2104.02167

[53] J. F. Plebański, M. Demiański, “Rotating, charged, and uniformly accelerating mass in general relativity”, Ann. Phys., 98:1 (1976), 98–127 | DOI | MR

[54] J. B. Griffiths, J. Podolský, “A new look at the Plebanski–Demianski family of solutions”, Internat. J. Modern Phys. D, 15:4 (2006), 335–370, arXiv: gr-qc/0511091 | DOI | MR

[55] G. W. Gibbons, C. M. Warnick, “Aspherical photon and anti-photon surfaces”, Phys. Lett. B, 763 (2016), 169–173, arXiv: 1609.01673 | DOI

[56] D. Astefanesei, R. B. Mann, E. Radu, “Nut charged space-times and closed timelike curves on the boundary”, JHEP, 01 (2005), 049, 37 pp. | DOI | MR

[57] J. B. Griffiths, J. Podolský, “Accelerating and rotating black holes”, Class. Quantum Grav., 22:17 (2005), 3467–3479 | DOI | MR

[58] B. Chng, R. Mann, C. Stelea, “Accelerating Taub–NUT and Eguchi–Hanson solitons in four dimensions”, Phys. Rev. D, 74:8 (2006), 084031, 9 pp. | DOI | MR

[59] G. Clément, D. Gal'tsov, M. Guenouche, “Rehabilitating space-times with NUTs”, Phys. Lett. B, 750 (2015), 591–594, arXiv: 1508.07622 | DOI | MR