Mots-clés : exact solution.
@article{TMF_2021_208_3_a5,
author = {Haifeng Wang and Yufeng Zhang},
title = {$\bar\partial$-dressing method for a few ($2+1$)-dimensional integrable coupling systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {452--470},
year = {2021},
volume = {208},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a5/}
}
TY - JOUR AU - Haifeng Wang AU - Yufeng Zhang TI - $\bar\partial$-dressing method for a few ($2+1$)-dimensional integrable coupling systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 452 EP - 470 VL - 208 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a5/ LA - ru ID - TMF_2021_208_3_a5 ER -
Haifeng Wang; Yufeng Zhang. $\bar\partial$-dressing method for a few ($2+1$)-dimensional integrable coupling systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 452-470. http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a5/
[1] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR
[2] R. Hirota, “A new form of Bäcklund transformations and its relation to the inverse scattering problem”, Progr. Theor. Phys., 52:5 (1974), 1498–1512 | DOI
[3] S. V. Manakov, “Metod obratnoi zadachi rasseyaniya i dvumernye evolyutsionnye uravneniya”, UMN, 31:5(191) (1976), 245–246 | MR | Zbl
[4] J. Weiss, M. Tabor, G. Carnevalle, “The Painlevé property for partial differential equations”, J. Math. Phys., 24:3 (1983), 522–526 | DOI | MR
[5] R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27:18 (1971), 1192–1994 | DOI
[6] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14:7 (1973), 805–809 | DOI | MR
[7] C. Rogers, W. F. Shadwick, Bäklund Transformation and Their Applications, Mathematics in Science and Engineering, 161, Academic Press, New York, 1982 | MR
[8] A. M. Bruckner, J. B. Bruckner, “Darboux transformations”, Trans. Amer. Math. Soc., 128:1 (1967), 103–111 | DOI | MR
[9] M. J. Ablowitz, D. Bar Yaakov, A. S. Fokus, “On the inverse scattering transform for Kadomtsev–Petviashvili equation”, Stud. Appl. Math., 62:2 (1983), 135–143 | DOI | MR
[10] B. G. Konopelchenko, Introduction to Multidimensional Integrable Equations. The Inverse Spectral Transform in $2+1$ Dimensions, Springer Science + Business Media, New York, 2013 | DOI | MR
[11] J. Zhu, X. Geng, “A hierarchy of coupled evolution equations with self-consistent sources and the dressing method”, J. Phys. A: Math. Theor., 46:3 (2012), 035204, 18 pp. | DOI | MR
[12] J. Zhu, X. Geng, “The AB equations and the $\bar\partial$-dressing method in semi-characteristic coordinates”, Math. Phys. Anal. Geom., 17:1–2 (2014), 49–65 | DOI | MR
[13] J. Luo, E. Fan, “$\bar\partial$-dressing method for the coupled Gerdjikov–Ivanov equation”, Appl. Math. Lett., 110 (2020), 106589, 10 pp. | DOI | MR
[14] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems”, Bull. Amer. Math. Soc. (N. S.), 26:1 (1992), 119–123 | DOI | MR
[15] P. Zhao, E. Fan, “Finite gap integration of the derivative nonlinear Schrödinger equation: a Riemann–Hilbert method”, Phys. D, 402 (2020), 132213, 31 pp. | DOI | MR
[16] D.-S. Wang, X. Wang, “Long-time asymptotics and the bright $N$-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach”, Nonlinear Anal.: Real World Appl., 41 (2018), 334–361 | DOI | MR
[17] P. Deift, X. Zhou, “Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space”, Commun. Pure Appl. Math., 56:8 (2010), 1029–1077 | DOI | MR
[18] Y. Chen, Z. Yan, D. Mihalache, “Soliton formation and stability under the interplay between parity-time-symmetric generalized Scarf-II potentials and Kerr nonlinearity”, Phys. Rev. E, 102:1 (2020), 012216, 11 pp. | DOI | MR
[19] B. G. Konopelchenko, “The two-dimensional second-order differential spectral problem: compatibility conditions, general BTs and integrable equations”, Inverse Problems, 4:1 (1988), 151–163 | DOI | MR
[20] M. Boiti, J. J.-P. Leon, F. Pempinelli, “Integrable two-dimensional generalisation of the sine- and sinh-Gordon equations”, Inverse Problems, 3:1 (1987), 37–49 | DOI | MR
[21] M. Boiti, J. J.-P. Leon, F. Pempinelli, “Spectral transform for a two spatial dimension extension of the dispersive long wave equation”, Inverse Problems, 3:3 (1987), 371–387 | DOI | MR
[22] V. E. Zakharov, “The inverse scattering method”, Solitons, Topics in Current Physics, 17, eds. R. K. Bullough, P. J. Caudrey, Springer, Berlin, 1990, 243–285 | DOI | MR
[23] J. Xu, E. Fan, “Long-time asymptotic behavior for the complex short pulse equation”, J. Differ. Equ., 269:11 (2020), 10322–10349 | DOI | MR
[24] V. E. Zakharov, S. V. Manakov, “Postroenie mnogomernykh nelineinykh integriruemykh sistem i ikh reshenii”, Funkts. analiz i ego pril., 19:2 (1985), 11–25 | DOI | MR | Zbl
[25] S. V. Manakov, “The inverse scattering transform for time-dependent Schrötinger equation and Kadomtsev–Petviashvili equation”, Phys. D, 3:1–2 (1981), 420–427 | DOI
[26] V. E. Zakharov, S. V. Manakov, “Mnogomernye nelineinye integriruemye sistemy i metody postroeniya ikh reshenii”, Zap. nauchn. sem. LOMI, 133 (1984), 77–91 | MR | Zbl
[27] L. V. Bogdanov, “Uravnenie Veselova–Novikova kak estestvennoe dvumernoe obobschenie uravneniya Kortevega–de Friza”, TMF, 70:2 (1987), 309–314 | DOI | MR | Zbl
[28] L. V. Bogdanov, S. V. Manakov, “The nonlocal $\bar\partial$-problem and ($2+1$)-dimensional soliton equations”, J. Phys. A: Math. Gen., 21:10 (1988), L537–L544 | DOI | MR
[29] V. G. Dubrovsky, “The construction of exact multiple pole solutions of some ($2+1$)-dimensional integrable nonlinear evolution equations via the $\bar\partial$-dressing method”, J. Phys. A: Math. Gen., 32:2 (1999), 369–390 | DOI | MR
[30] V. G. Dubrovsky, I. B. Formusatik, “The construction of exact rational solutions with constant asymptotic values at infinity of two-dimensional NVN integrable nonlinear evolution equations via the $\bar\partial$-dressing method”, J. Phys. A: Math. Gen., 34:9 (2001), 1837–1851 | DOI | MR
[31] V. G. Dubrovsky, “The application of the $\bar\partial$-dressing method to some integrable ($2+1$)-dimensional nonlinear equations”, J. Phys. A: Math. Gen., 29:13 (1996), 3617–3630 | DOI | MR
[32] H. Chang, Y. Li, “Two new nonlinear integrable hierarchies and their nonlinear integrable coupings”, J. Appl. Math. Phys., 6:6 (2018), 1346–1362 | DOI
[33] X. Guan, H. Zhang, W. Liu, “Nonlinear bi-integrable couplings of a generalized Kaup–Newell type soliton hierarchy”, Optik, 172 (2018), 1003–1011 | DOI
[34] X.-G. Geng, W.-X. Ma, “A generalized Kaup–Newell spectral problem, soliton equations and finite-dimensional integrable systems”, Nuovo Cimento A, 108:4 (1995), 477–486 | DOI | MR
[35] W.-X. Ma, Y. Zhuo, “Reduced D-Kaup–Newell soliton hierarchies from $\mathrm{sl}(2,\mathbb{R})$ and $\mathrm{so}(3,\mathbb{R})$”, Internat. J. Geom. Meth. Modern Phys., 13:7 (2016), 1650105, 16 pp. | DOI | MR
[36] X.-X. Xu, “An integrable coupling hierarchy of the Mkdv_integrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy”, Appl. Math. Comput., 216:1 (2010), 344–353 | MR
[37] Y. Zhang, H. Tam, “A few integrable systems and spatial spectral transformations”, Commun. Nonlinear Sci. Numer. Simul., 14:11 (2009), 3770–3783 | DOI | MR
[38] Y. Zhang, W. Rui, “A few continuous and discrete dynamical systems”, Rep. Math. Phys., 78:1 (2016), 19–32 | DOI | MR
[39] Y. Zhang, H. Tam, “Applications of the Lie algebra $\mathrm{gl}(2)$”, Modern Phys. Lett. B, 23:14 (2009), 1763–1770 | DOI | MR
[40] Y. Zhang, H. Zhang, Q. Yan, “Integrable couplings of Botie–Pempinelli–Tu (BPT) hierarchy”, Phys. Lett. A, 299:5–6 (2002), 543–548 | DOI | MR
[41] W. X. Ma, B. Fuchssteiner, “Integrable theory of the perturbation equations”, Chaos, Soliton and Fractals, 7:8 (1996), 1227–1250 | DOI | MR
[42] E. Fan, Y. Zhang, “A simple method for generating integrable hierarchies with multi-potential functions”, Chaos, Soliton and Fractals, 25:2 (2005), 425–439 | DOI | MR
[43] W.-X. Ma, “Integrable couplings of soliton equations by perturbations I: A general theory and application to the KdV hierarchy”, Methods Appl. Anal., 7:1 (2000), 21–55 | DOI | MR
[44] F. Guo, Y. Zhang, “A new loop algebra and a corresponding integrable hierarchy, as well as its integrable coupling”, J. Math. Phys., 44:12 (2003), 5793–5803 | DOI | MR
[45] Y. F. Zhang, “A generalized multi-component Glachette–Johnson (GJ) hierarchy and its integrable coupling system”, Chaos, Soliton and Fractals, 21:2 (2004), 305–310 | DOI | MR
[46] W.-X. Ma, X.-X. Xu, Y. Zhang, “Semidirect sums of Lie algebras and discrete integrable couplings”, J. Math. Phys., 47:5 (2006), 053501, 16 pp. | DOI | MR
[47] W.-X. Ma, M. Chen, “Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras”, J. Phys. A: Math. Gen., 39:34 (2006), 10787–10801 | DOI | MR
[48] S. Shen, C. Li, Y. Jin, W.-X. Ma, “Completion of the Ablowitz–Kaup–Newell–Segur integrable coupling”, J. Math. Phys., 59:10 (2018), 103503, 11 pp., arXiv: 1706.04308 | DOI | MR
[49] M. McAnally, W.-X. Ma, “Two integrable couplings of a generalized D-Kaup–Newell hierarchy and their Hamiltonian and bi-Hamiltonian structures”, Nonlinear Analys., 191 (2020), 111629, 13 pp. | DOI | MR
[50] F. Yu, H. Zhang, “Hamiltonian structures of the integrable couplings for the multicomponent Dirac hierarchy”, Appl. Math. Comput., 197:2 (2008), 828–835 | DOI | MR
[51] Y.-J. Zhang, W.-X. Ma, Ö. Ünsal, “A novel kind of AKNS integrable couplings and their Hamiltonian structures”, Turkish J. Math., 41:6 (2016), 1467–1476 | DOI | MR