Existence and uniqueness of fixed points of an integral operator of Hammerstein type
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 440-451 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the existence and uniqueness of positive fixed points of an integral operator of the Hammerstein type in the space of continuous functions. Under certain conditions on the integral operator, we establish a sufficient condition for the the integral operator to have exactly one positive fixed point.
Keywords: Hammerstein integral operator, positive fixed point, uniqueness, cone, normal cone.
Mots-clés : existence
@article{TMF_2021_208_3_a4,
     author = {F. H. Khaidarov},
     title = {Existence and uniqueness of fixed points of an integral operator of {Hammerstein} type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {440--451},
     year = {2021},
     volume = {208},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a4/}
}
TY  - JOUR
AU  - F. H. Khaidarov
TI  - Existence and uniqueness of fixed points of an integral operator of Hammerstein type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 440
EP  - 451
VL  - 208
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a4/
LA  - ru
ID  - TMF_2021_208_3_a4
ER  - 
%0 Journal Article
%A F. H. Khaidarov
%T Existence and uniqueness of fixed points of an integral operator of Hammerstein type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 440-451
%V 208
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a4/
%G ru
%F TMF_2021_208_3_a4
F. H. Khaidarov. Existence and uniqueness of fixed points of an integral operator of Hammerstein type. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 440-451. http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a4/

[1] V. Doležal, Monotone Operators and Applications in Control and Network Theory, Studies in Automation and Control, 2, Elsevier, New York, 1979 | MR

[2] A. A. Richard, A. de Korvin, V. Van Tho, “Integration theory for Hammerstein operators”, J. Math. Anal. Appl., 61:1 (1977), 72–96 | DOI | MR

[3] A. Cabada, J. Á. Cid, G. Infante, “A positive fixed point theorem with applications to systems of Hammerstein integral equations”, Bound. Value Probl., 2014 (2014), 254, 10 pp. | DOI | MR

[4] E. Zeidler, Nonlinear Functional Analyses and Its Applications, v. I, Fixed-Point Theorem, Springer, New York, 1986 | MR

[5] F. Li, Y. Li, Z. Liang, “Existence of solutions to nonlinear Hammerstein integral equations and applications”, J. Math. Anal. Appl., 323:1 (2006), 209–227 | DOI | MR

[6] W.-Q. Deng, “An iterative solution to a system of nonlinear Hammerstein type equations and a system of generalized mixed equilibrium problems”, J. Fixed Point Theor. Appl., 19:3 (2017), 2051–2068 | DOI | MR

[7] D. Guo, V. Lakshmicantham, Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering, 5, Academic Press, New York, 1988 | MR

[8] H. Amann, “On the number of solutions of nonlinear equations in ordered Banach spaces”, J. Funct. Anal., 11:3 (1972), 346–384 | DOI | MR

[9] U. A. Rozikov, F. Kh. Khaidarov, “Modeli s chetyrmya konkuriruyuschimi vzaimodeistviyami i s neschetnym mnozhestvom znachenii spina na dereve Keli”, TMF, 191:3 (2017), 503–517 | DOI | DOI | MR

[10] A. Ruiz-Herrera, “Permanence of two species and fixed point index”, Nonlinear Anal., 74:1 (2011), 146–153 | DOI | MR

[11] Yu. Kh. Eshkabilov, F. H. Haydarov, U. A. Rozikov, “Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, Math. Phys. Anal. Geom., 16:1 (2013), 1–17 | DOI | MR

[12] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | DOI | MR

[13] F. H. Haydarov, “Fixed points of Lyapunov integral operators and Gibbs measures”, Positivity, 22:4 (2018), 1165–1172 | DOI | MR