Mots-clés : existence
@article{TMF_2021_208_3_a4,
author = {F. H. Khaidarov},
title = {Existence and uniqueness of fixed points of an integral operator of {Hammerstein} type},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {440--451},
year = {2021},
volume = {208},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a4/}
}
F. H. Khaidarov. Existence and uniqueness of fixed points of an integral operator of Hammerstein type. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 440-451. http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a4/
[1] V. Doležal, Monotone Operators and Applications in Control and Network Theory, Studies in Automation and Control, 2, Elsevier, New York, 1979 | MR
[2] A. A. Richard, A. de Korvin, V. Van Tho, “Integration theory for Hammerstein operators”, J. Math. Anal. Appl., 61:1 (1977), 72–96 | DOI | MR
[3] A. Cabada, J. Á. Cid, G. Infante, “A positive fixed point theorem with applications to systems of Hammerstein integral equations”, Bound. Value Probl., 2014 (2014), 254, 10 pp. | DOI | MR
[4] E. Zeidler, Nonlinear Functional Analyses and Its Applications, v. I, Fixed-Point Theorem, Springer, New York, 1986 | MR
[5] F. Li, Y. Li, Z. Liang, “Existence of solutions to nonlinear Hammerstein integral equations and applications”, J. Math. Anal. Appl., 323:1 (2006), 209–227 | DOI | MR
[6] W.-Q. Deng, “An iterative solution to a system of nonlinear Hammerstein type equations and a system of generalized mixed equilibrium problems”, J. Fixed Point Theor. Appl., 19:3 (2017), 2051–2068 | DOI | MR
[7] D. Guo, V. Lakshmicantham, Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering, 5, Academic Press, New York, 1988 | MR
[8] H. Amann, “On the number of solutions of nonlinear equations in ordered Banach spaces”, J. Funct. Anal., 11:3 (1972), 346–384 | DOI | MR
[9] U. A. Rozikov, F. Kh. Khaidarov, “Modeli s chetyrmya konkuriruyuschimi vzaimodeistviyami i s neschetnym mnozhestvom znachenii spina na dereve Keli”, TMF, 191:3 (2017), 503–517 | DOI | DOI | MR
[10] A. Ruiz-Herrera, “Permanence of two species and fixed point index”, Nonlinear Anal., 74:1 (2011), 146–153 | DOI | MR
[11] Yu. Kh. Eshkabilov, F. H. Haydarov, U. A. Rozikov, “Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, Math. Phys. Anal. Geom., 16:1 (2013), 1–17 | DOI | MR
[12] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | DOI | MR
[13] F. H. Haydarov, “Fixed points of Lyapunov integral operators and Gibbs measures”, Positivity, 22:4 (2018), 1165–1172 | DOI | MR