@article{TMF_2021_208_3_a3,
author = {A. Yu. Orlov},
title = {Notes about the {KP/BKP} correspondence},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {416--439},
year = {2021},
volume = {208},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a3/}
}
A. Yu. Orlov. Notes about the KP/BKP correspondence. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 416-439. http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a3/
[1] M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems (Kyoto, January 7–9, 1981), RIMS Kôkyûroku, 439, Kyoto Univ., Kyoto, 1981, 30–46 | MR | Zbl
[2] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl
[3] T. Miwa, M. Jimbo, E. Date, Solitons. Differential Equations, Symmetries and Infinite Dimensional Algebras, Cambridge Tracts in Mathematics, 135, Cambridge Univ. Press, Cambridge, 2000 | MR
[4] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, Japan, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto; North-Holland, Amsterdam, 1984, 1–95 | DOI | MR | Zbl
[5] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type”, Phys. D, 4:3 (1982), 343–365 | DOI | MR
[6] V. Kac, J. van de Leur, “The geometry of spinors and the multicomponent BKP and DKP hierarchies”, The Bispectral Problem (Montreal, PQ, 1997), CRM Proceedings and Lecture Notes, 14, eds. J. Harnad, A. Kasman, AMS, Providence, RI, 1998, 159–202, arXiv: solv-int/9706006 | DOI | MR | Zbl
[7] A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye potentsialnye operatory Shredingera. Yavnye formuly i evolyutsionnye uravneniya”, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl
[8] I. A. Taimanov, “Teta-funktsii Prima i ierarkhii nelineinykh uravnenii”, Matem. zametki, 50:1 (1991), 98–107 | DOI | MR | Zbl
[9] J. Harnad, A. Yu. Orlov, “Fermionic approach to bilinear expansions of Schur functions in Schur $Q$-functions”, accepted for publication in Proc. Amer. Math. Soc., arXiv: 2008.13734
[10] J. Harnad, A. Yu. Orlov, “Bilinear expansions of lattices of KP $\tau$-functions in BKP $\tau$-functions: a fermionic approach”, J. Math. Phys., 62:1 (2021), 013508, 17 pp., arXiv: 2010.05055 | DOI | MR
[11] J. Harnad, A. Yu. Orlov, “Polynomial KP and BKP $\tau$-functions and”, Online First, DOI: 10.1007/s00023-021-01046-z, 2021, arXiv: 2011.13339
[12] A. Yu. Orlov, D. M. Scherbin, “Gipergeometricheskie resheniya solitonnykh uravnenii”, TMF, 128:1 (2001), 84–108, arXiv: nlin/0001001 | DOI | DOI | MR | Zbl
[13] A. Yu. Orlov, “Gipergeometricheskie funktsii, svyazannye s $Q$-mnogochlenami Shura, i uravnenie $B$KP”, TMF, 137:2 (2003), 253–270, arXiv: math-ph/0302011 | DOI | DOI | MR | Zbl
[14] Dzh. Kharnad, I. V. van de Ler, A. Yu. Orlov, “Kratnye summy i integraly kak tau-funktsii neitralnoi ierarkhii Kadomtseva–Petviashvili”, TMF, 168:1 (2011), 112–124 | DOI | DOI
[15] J. Harnad, E. Lee, “Symmetric polynomials, generalized Jacobi–Trudi identities and $\tau$-functions”, J. Math. Phys., 59:9 (2018), 091411, 23 pp. | DOI | MR
[16] F. Balogh, J. Harnad, J. Hurtubise, “Isotropic Grassmannians, Plücker and Cartan maps”, J. Math. Phys., 62:2 (2021), 021701, 23 pp. | DOI | MR
[17] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, A. Yu. Orlov, Around spin Hurwitz numbers, arXiv: 2012.09847
[18] V. S. Dryuma, “Ob analiticheskom reshenii dvumernogo uravneniya Kortevega–de Vriza (KDV)”, Pisma v ZhETF, 19:12 (1974), 753–755
[19] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 ; “Интегрирование нелинейных уравнений математической физики методом обратной задачи рассеяния. II”, 13:3 (1979), 13–22 | DOI | MR | Zbl | DOI | MR | Zbl
[20] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR
[21] Y. You, “Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups”, Infinite-Dimensional Lie Algebras and Groups (CIRM, Luminy, Marseille, July 4–8, 1988), Advanced Series in Mathematical Physics, 7, ed. V. G. Kac, World Sci., Teaneck, NJ, 1989, 449–464 | DOI | MR
[22] J. J. C. Nimmo, “Hall–Littlewood symmetric functions and the BKP equation”, J. Phys. A, 23:5 (1990), 751–760 | DOI | MR
[23] A. K. Pogrebkov, V. N. Sushko, “Kvantovanie $(\sin\varphi)_2$-vzaimodeistviya v terminakh fermionnykh peremennykh”, TMF, 24:3 (1975), 425–429 | DOI
[24] J. Harnad, A. Yu. Orlov, “Bilinear expansions of Darboux lattices of KP $\tau$-functions in BKP $\tau$-functions: a fermionic approach”, J. Math. Phys., 62:1 (2021), 013508, 17 pp., arXiv: 2010.05055 | DOI | MR
[25] H. Itoyama, A. Mironov, A. Morozov, “From Kronecker to tableau pseudo-characters in tensor models”, Phys. Lett. B, 788 (2019), 76–81, arXiv: 1808.07783 | DOI
[26] A. D. Mironov, A. Yu. Morozov, A. V. Sleptsov, “Razlozhenie po rodam dlya polinomov KhOMFLI”, TMF, 177:2 (2013), 179–221 | DOI | DOI | MR | Zbl
[27] A. Eskin, A. Okounkov, R. Pandharipande, “The theta characteristic of a branched covering”, Adv. Math., 217:3 (2008), 873–888 | DOI | MR
[28] A. N. Sergeev, “Tenzornaya algebra tozhdestvennogo predstavleniya kak modul nad superalgebrami Li $\mathfrak Gl(n,m)$ i $Q(n)$”, Matem. sb., 123(165):3 (1984), 422–430 | DOI | MR | Zbl
[29] J. Lee, “A square root of Hurwitz numbers”, Manuscripta Math., 162:1–2 (2020), 99–113, arXiv: 1807.03631 | DOI | MR
[30] A. Mironov, A. Morozov, S. Natanzon, “Cut-and-join structure and integrability for spin Hurwitz numbers”, Eur. Phys. J. C, 80:2 (2020), 97, 16 pp., arXiv: 1904.11458 | DOI
[31] A. Okounkov, “Toda equations for Hurwitz numbers”, Math. Res. Lett., 7:4 (2000), 447–453 | DOI | MR
[32] A. Okounkov, R. Pandharipande, “Gromov–Witten theory, Hurwitz theory and completed cycles”, Ann. Math. (2), 163:2 (2006), 517–560, arXiv: math.AG/0204305 | DOI | MR | Zbl
[33] I. P. Goulden, D. M. Jackson, “The KP hierarchy, branched covers and triangulations”, Adv. Math., 219:3 (2008), 932–951 | DOI | MR
[34] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Polnyi nabor operatorov razrezaniya i skleiki v teorii Gurvitsa–Kontsevicha”, TMF, 166:1 (2011), 3–27, arXiv: 0904.4227 | DOI | DOI | MR
[35] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, “Integrability of Hurwitz partition functions”, J. Phys. A: Math. Theor., 45:4 (2012), 045209, 10 pp., arXiv: 1103.4100 | DOI | MR
[36] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, “On KP-integrable Hurwitz functions”, JHEP, 11 (2014), 080, 30 pp., arXiv: 1405.1395 | DOI | MR
[37] M. E. Kazaryan, S. K. Lando, “Kombinatornye resheniya integriruemykh ierarkhii”, UMN, 70:3(423) (2015), 77–106, arXiv: 1512.07172 | DOI | DOI | MR | Zbl
[38] Ya. Amborn, L. O. Chekhov, “Matrichnaya model dlya gipergeometricheskikh chisel Gurvitsa”, TMF, 181:3 (2014), 421–43 | DOI | DOI | MR
[39] J. Harnad, A. Yu. Orlov, “Hypergeometric $\tau$-functions, Hurwitz numbers and enumeration of paths”, Commun. Math. Phys., 338:1 (2015), 267–284, arXiv: 1407.7800 | DOI | MR
[40] J. Harnad, “Weighted Hurwitz numbers and hypergeometric $\tau$-functions: an overview”, String-Math 2014 (University of Alberta, Edmonton, Alberta, Canada, June 9–13, 2014), Proceedings of Symposia in Pure Mathematics, 93, eds. V. Bouchard, C. Doran, S. Méndez-Diez, C. Quigley, AMS, Providence, RI, 2016, 289–333, arXiv: 1504.03408 | DOI | MR | Zbl
[41] S. M. Natanzon, A. Yu. Orlov, “BKP and projective Hurwitz numbers”, Lett. Math. Phys., 107:6 (2017), 1065–1109, arXiv: 1501.01283 | DOI | MR
[42] A. Okunkov, G. Olshanskii, “Sdvinutye funktsii Shura”, Algebra i analiz, 9:2 (1997), 73–14 | MR | Zbl
[43] V. N. Ivanov, “Interpolation analogues of Schur $Q$-functions”, Zap. nauchn. sem. POMI, 307 (2004), 99–119 | DOI | MR | Zbl
[44] J. Harnad, F. Balogh, Tau functions and their Applications, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 2021
[45] A. Yu. Orlov, D. M. Scherbin, Fermionic representation for basic hypergeometric functions related to Schur polynomials, arXiv: nlin/0001001
[46] T. Takebe, “Representation theoretical meaning of initial value problem for the Toda lattice hierarchy. I”, Lett. Math. Phys., 21:1 (1991), 77–84 | DOI | MR
[47] V. G. Kac, J. W. van de Leur, “Equivalence of formulations of the MKP hierarchy and its polynomial tau-functions”, Jpn. J. Math., 13:2 (2018), 235–271 | DOI | MR
[48] V. G. Kac, N. Rozhkovskaya, J. van de Leur, “Polynomial tau-functions of the KP, BKP, and the $s$-component KP Hierarchies”, J. Math. Phys., 62:2 (2021), 021702, 25 pp., arXiv: 2005.02665 | DOI | MR
[49] G. Olshanski, “Laguerre and Meixner orthogonal bases in the algebra of symmetric functions”, Intern. Math. Res. Notices, 2012:16 (2012), 3615–3679 | DOI | MR
[50] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, A. Zabrodin, “Towards unified theory of $2$d gravity”, Nucl. Phys. B, 380:1–2 (1992), 181–240 | DOI | MR
[51] T. Nakatsu, K. Takasaki, S. Tsujimaru, “Quantum and classical aspects of deformed $c=1$ strings”, Nucl. Phys. B, 443:1–2 (1995), 155–197 | DOI | MR
[52] S. Kharchev, Kadomtsev–Petviashvili hierarchy and generalized Kontsevich model, Preprint ITEP/TH-78/97, arXiv: hep-th/9810091
[53] K. Takasaki, “Toda lattice hierarchy and generalized string equations”, Commun. Math. Phys., 181:1 (1996), 131–156 | DOI | MR
[54] J. Harnad, A. Yu. Orlov, “Convolution symmetries of integrable hierarchies, matrix models and $\tau$-functions”, Random Matrix Theory, Interacting Particle Systems and Integrable Systems, Mathematical Sciences Research Institute Publications, 65, eds. P. Deift, P. Forrester, Cambridge Univ. Press, New York, 2014, 247–275 | MR
[55] E. Bettelheim, A. G. Abanov, P. Wiegmann, “Nonlinear dynamics of quantum systems and soliton theory”, J. Phys. A: Math. Theor., 40:8 (2007), F193–F208, arXiv: nlin/0605006 | DOI | MR
[56] I. P. Goulden, D. M. Jackson, “Transitive factorizations into transpositions and holomorphic mappings on the sphere”, Proc. Amer. Math. Soc., 125:1 (1997), 51–60 | DOI | MR | Zbl