Mots-clés : solitons
@article{TMF_2021_208_3_a2,
author = {V. I. Avrutskiy and A. M. Ishkhanyan and V. P. Krainov},
title = {Fractional derivative method for describing solitons on the surface of deep water},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {409--415},
year = {2021},
volume = {208},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a2/}
}
TY - JOUR AU - V. I. Avrutskiy AU - A. M. Ishkhanyan AU - V. P. Krainov TI - Fractional derivative method for describing solitons on the surface of deep water JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 409 EP - 415 VL - 208 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a2/ LA - ru ID - TMF_2021_208_3_a2 ER -
%0 Journal Article %A V. I. Avrutskiy %A A. M. Ishkhanyan %A V. P. Krainov %T Fractional derivative method for describing solitons on the surface of deep water %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 409-415 %V 208 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a2/ %G ru %F TMF_2021_208_3_a2
V. I. Avrutskiy; A. M. Ishkhanyan; V. P. Krainov. Fractional derivative method for describing solitons on the surface of deep water. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 409-415. http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a2/
[1] M. J. Lighthill, “Some special cases treated by the Whitham theory”, Proc. Roy. Soc. London Ser. A, 299:1456 (1967), 28–53 | DOI
[2] D. J. Benney, A. C. Newell, “The propagation of nonlinear envelopes”, J. Math. Phys., 46:1–4 (1967), 133–139 | DOI | MR
[3] V. H. Chu, C. C. Mei, “The non-linear evolution of Stokes waves in deep water”, J. Fluid Mech., 47:2 (1971), 337–351 | DOI
[4] H. C. Yuen, B. M. Lake, “Nonlinear deep water waves: Theory and experiment”, Phys. Fluids, 18:8 (1975), 956–950 | DOI
[5] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi samomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134
[6] J. E. Feir, “Discussion: some results from wave pulse experiments”, Proc. Roy. Soc. London Ser. A, 299:1456 (1967), 54–58
[7] B. I. Cohen, K. M. Watson, B. J. West, “Some properties of deep water solitons”, Phys. Fluids, 19:3 (1976), 345–354 | DOI
[8] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl
[9] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR | Zbl
[10] V. P. Krainov, Lektsii po izbrannym problemam mekhaniki sploshnykh sred, Intellekt, Dolgoprudnyi, 2014
[11] A. Slunyaev, G. F. Clauss, M. Klein, M. Onorato, “Simulations and experiments of short intense envelope solitons of surface water waves”, Phys. Fluids, 25:6 (2013), 067105, 32 pp. | DOI
[12] A. Cazaubiel, G. Michel, S. Lepot, B. Semin, S. Aumaître, M. Berhanu, F. Bonnefoy, E. Falcon, “Coexistence of solitons and extreme events in deep water surface waves”, Phys. Rev. Fluids, 3:11 (2018), 114802, 21 pp., arXiv: 1810.07922 | DOI
[13] D. I. Kachulin, A. I. Dyachenko, S. Dremov, “Multiple soliton interactions on the surface of deep water”, Fluids, 5:2 (2020), 65, 10 pp. | DOI
[14] A. Gelash, D. Agafontsev, V. Zakharov, G. El, S. Randoux, P. Suret, “Bound state soliton gas dynamics underlying the noise-induced modulational instability”, Phys. Rev. Lett., 123:23 (2019), 234102, 7 pp., arXiv: 1907.07914 | DOI
[15] P. Suret, A. Tikan, F. Bonnefoy, F. Copie, G. Ducrozet, A. Gelash, G. Prabhudesai, G. Michel, A. Cazaubiel, E. Falcon, G. El, St. Randoux, “Nonlinear spectral synthesis of soliton gas in deep-water surface gravity waves”, Phys. Rev. Lett., 125:26 (2020), 264101, 6 pp., arXiv: 2006.16778 | DOI