Fractional derivative method for describing solitons on the surface of deep water
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 409-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The fractional derivative method is used to take wave dispersion into account in the wave equation when describing the propagation of gravitational soliton waves on the surface of deep water. This approach is similar to that used to obtain the Korteweg–de Vries equation for solitons on the surface of shallow water, where the dispersion term in the wave equation is the third derivative of the velocity. It provides an alternative to the well-known approach of Zakharov and others based on the model of the nonlinear Schrödinger equation. The obtained nonlinear integral equation can be solved numerically.
Keywords: fractional derivatives, deep water, Navier–Stokes equation.
Mots-clés : solitons
@article{TMF_2021_208_3_a2,
     author = {V. I. Avrutskiy and A. M. Ishkhanyan and V. P. Krainov},
     title = {Fractional derivative method for describing solitons on the surface of deep water},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {409--415},
     year = {2021},
     volume = {208},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a2/}
}
TY  - JOUR
AU  - V. I. Avrutskiy
AU  - A. M. Ishkhanyan
AU  - V. P. Krainov
TI  - Fractional derivative method for describing solitons on the surface of deep water
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 409
EP  - 415
VL  - 208
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a2/
LA  - ru
ID  - TMF_2021_208_3_a2
ER  - 
%0 Journal Article
%A V. I. Avrutskiy
%A A. M. Ishkhanyan
%A V. P. Krainov
%T Fractional derivative method for describing solitons on the surface of deep water
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 409-415
%V 208
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a2/
%G ru
%F TMF_2021_208_3_a2
V. I. Avrutskiy; A. M. Ishkhanyan; V. P. Krainov. Fractional derivative method for describing solitons on the surface of deep water. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 409-415. http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a2/

[1] M. J. Lighthill, “Some special cases treated by the Whitham theory”, Proc. Roy. Soc. London Ser. A, 299:1456 (1967), 28–53 | DOI

[2] D. J. Benney, A. C. Newell, “The propagation of nonlinear envelopes”, J. Math. Phys., 46:1–4 (1967), 133–139 | DOI | MR

[3] V. H. Chu, C. C. Mei, “The non-linear evolution of Stokes waves in deep water”, J. Fluid Mech., 47:2 (1971), 337–351 | DOI

[4] H. C. Yuen, B. M. Lake, “Nonlinear deep water waves: Theory and experiment”, Phys. Fluids, 18:8 (1975), 956–950 | DOI

[5] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi samomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134

[6] J. E. Feir, “Discussion: some results from wave pulse experiments”, Proc. Roy. Soc. London Ser. A, 299:1456 (1967), 54–58

[7] B. I. Cohen, K. M. Watson, B. J. West, “Some properties of deep water solitons”, Phys. Fluids, 19:3 (1976), 345–354 | DOI

[8] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[9] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR | Zbl

[10] V. P. Krainov, Lektsii po izbrannym problemam mekhaniki sploshnykh sred, Intellekt, Dolgoprudnyi, 2014

[11] A. Slunyaev, G. F. Clauss, M. Klein, M. Onorato, “Simulations and experiments of short intense envelope solitons of surface water waves”, Phys. Fluids, 25:6 (2013), 067105, 32 pp. | DOI

[12] A. Cazaubiel, G. Michel, S. Lepot, B. Semin, S. Aumaître, M. Berhanu, F. Bonnefoy, E. Falcon, “Coexistence of solitons and extreme events in deep water surface waves”, Phys. Rev. Fluids, 3:11 (2018), 114802, 21 pp., arXiv: 1810.07922 | DOI

[13] D. I. Kachulin, A. I. Dyachenko, S. Dremov, “Multiple soliton interactions on the surface of deep water”, Fluids, 5:2 (2020), 65, 10 pp. | DOI

[14] A. Gelash, D. Agafontsev, V. Zakharov, G. El, S. Randoux, P. Suret, “Bound state soliton gas dynamics underlying the noise-induced modulational instability”, Phys. Rev. Lett., 123:23 (2019), 234102, 7 pp., arXiv: 1907.07914 | DOI

[15] P. Suret, A. Tikan, F. Bonnefoy, F. Copie, G. Ducrozet, A. Gelash, G. Prabhudesai, G. Michel, A. Cazaubiel, E. Falcon, G. El, St. Randoux, “Nonlinear spectral synthesis of soliton gas in deep-water surface gravity waves”, Phys. Rev. Lett., 125:26 (2020), 264101, 6 pp., arXiv: 2006.16778 | DOI