Group analysis of the one-dimensional Boltzmann
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 367-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We complete the investigation of the feasibility in principle to close the moment system for the kinetic equation via invariant relations obtained by group analysis methods. For the one-dimensional equation, we obtain an affirmative answer, find an invariant closure of the moment system, and reveal several new phenomena.
Keywords: Boltzmann equation, symmetry group, kinetic equation, invariants and moment system closure.
@article{TMF_2021_208_3_a0,
     author = {K. S. Platonova and A. V. Borovskikh},
     title = {Group analysis of the one-dimensional {Boltzmann}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--386},
     year = {2021},
     volume = {208},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a0/}
}
TY  - JOUR
AU  - K. S. Platonova
AU  - A. V. Borovskikh
TI  - Group analysis of the one-dimensional Boltzmann
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 367
EP  - 386
VL  - 208
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a0/
LA  - ru
ID  - TMF_2021_208_3_a0
ER  - 
%0 Journal Article
%A K. S. Platonova
%A A. V. Borovskikh
%T Group analysis of the one-dimensional Boltzmann
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 367-386
%V 208
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a0/
%G ru
%F TMF_2021_208_3_a0
K. S. Platonova; A. V. Borovskikh. Group analysis of the one-dimensional Boltzmann. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 367-386. http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a0/

[1] K. S. Platonova, “Gruppovoi analiz odnomernogo uravneniya Boltsmana. I. Gruppy simmetrii”, Differents. uravneniya, 53:4 (2017), 538–546 | DOI | DOI

[2] K. S. Platonova, “Gruppovoi analiz odnomernogo uravneniya Boltsmana. II. Gruppy ekvivalentnosti i gruppy simmetrii v spetsialnom sluchae”, Differents. uravneniya, 53:6 (2017), 801–813 | DOI | DOI

[3] K. S. Platonova, A. V. Borovskikh, “Gruppovoi analiz odnomernogo uravneniya Boltsmana III. Usloviya sokhraneniya fizicheskogo smysla momentnykh velichin”, TMF, 195:3 (2018), 452–483 | DOI | DOI

[4] K. S. Platonova, A. V. Borovskikh, “Gruppovoi analiz odnomernogo uravneniya Boltsmana. IV. Polnaya gruppovaya klassifikatsiya v obschem sluchae”, TMF, 201:2 (2019), 232–265 | DOI | DOI | MR

[5] K. S. Platonova, A. V. Borovskikh, “Gruppovoi analiz uravnenii Boltsmana i Vlasova”, TMF, 203:3 (2020), 417–450 | DOI | DOI | MR

[6] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | DOI | MR

[7] V. V. Palin, E. V. Radkevich, “On the Maxwell problem”, J. Math. Sci. (N. Y.), 157:6 (2009), 816–857 | DOI | MR

[8] I. Müller, T. Ruggeri, Extended Thermodynamics, Springer Tracts in Natural Philosophy, 37, Springer, New York, 1993 | DOI | MR

[9] C. D. Levermore, “Moment closure hierarchies for kinetic theories”, J. Stat. Phys., 83:5–6 (1996), 1021–1065 | DOI | MR