@article{TMF_2021_208_2_a8,
author = {A. V. Razumov},
title = {$\ell$-weights and factorization of transfer operators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {310--341},
year = {2021},
volume = {208},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a8/}
}
A. V. Razumov. $\ell$-weights and factorization of transfer operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 310-341. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a8/
[1] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz”, Commun. Math. Phys., 177:2 (1996), 381–398, arXiv: hep-th/9412229 | DOI | MR
[2] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, “Integrable structure of conformal field theory II. Q-operator and DDV equation”, Commun. Math. Phys., 190:2 (1997), 247–278, arXiv: hep-th/9604044 | DOI | MR
[3] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, “Integrable structure of conformal field theory III. The Yang–Baxter relation”, Commun. Math. Phys., 200:2 (1999), 297–324, arXiv: hep-th/9805008 | DOI | MR
[4] S. M. Khoroshkin, V. N. Tolstoy, “The uniqueness theorem for the universal $R$-matrix”, Lett. Math. Phys., 24:3 (1992), 231–244 | DOI | MR
[5] S. Levendorskii, Ya. Soibelman, V. Stukopin, “The quantum Weyl group and the universal quantum $R$-matrix for affine Lie algebra $A_1^{(1)}\,$”, Lett. Math. Phys., 27:4 (1993), 253–264 | DOI | MR
[6] Y.-Z. Zhang, M. D. Gould, “Quantum affine algebras and universal $R$-matrix with spectral parameter”, Lett. Math. Phys., 31:2 (1994), 101–110, arXiv: hep-th/9307007 | DOI | MR
[7] A. J. Bracken, M. D. Gould, Y.-Z. Zhang, G. W. Delius, “Infinite families of gauge-equivalent $R$-matrices and gradations of quantized affine algebras”, Internat. J. Modern Phys. B, 8:25–26 (1994), 3679–3691, arXiv: hep-th/9310183 | DOI | MR
[8] A. J. Bracken, M. D. Gould, Y.-Z. Zhang, “Quantised affine algebras and parameter-dependent $R$-matrices”, Bull. Austral. Math. Soc., 51:2 (1995), 177–194 | DOI | MR
[9] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “Exercises with the universal $R$-matrix”, J. Phys. A: Math. Theor., 43:41 (2010), 415208, 35 pp., arXiv: 1004.5342 | DOI | MR | Zbl
[10] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “On the universal $R$-matrix for the Izergin–Korepin model”, J. Phys. A: Math. Theor., 44:35 (2011), 355202, 25 pp., arXiv: 1104.5696 | DOI | MR
[11] V. V. Bazhanov, Z. Tsuboi, “Baxter's Q-operators for supersymmetric spin chains”, Nucl. Phys. B, 805:3 (2008), 451–516, arXiv: 0805.4274 | DOI | MR
[12] G. Boos, F. Geman, A. Klyumper, Kh. S. Nirov, A. V. Razumov, “Universalnye ob'ekty integriruemosti”, TMF, 174:1 (2013), 25–45, arXiv: 1205.4399 | DOI | DOI | MR | Zbl
[13] A. V. Razumov, “Monodromy operators for higher rank”, J. Phys. A: Math. Theor., 46:38 (2013), 385201, 24 pp., arXiv: 1211.3590 | DOI | MR
[14] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “Universal ${R}$-matrix and functional relations”, Rev. Math. Phys., 26:6 (2014), 1430005, 66 pp., arXiv: 1205.1631 | DOI | MR
[15] V. V. Bazhanov, A. N. Hibberd, S. M. Khoroshkin, “Integrable structure of $\mathcal W_3$ conformal field theory, quantum Boussinesq theory and boundary affine Toda theory”, Nucl. Phys. B, 622:3 (2002), 475–574, arXiv: hep-th/0105177 | DOI | MR
[16] T. Kojima, “Baxter's $Q$-operator for the $W$-algebra $W_N$”, J. Phys. A: Math. Theor., 41:35 (2008), 355206, 16 pp., arXiv: 0803.3505 | DOI | MR
[17] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “Quantum groups and functional relations for higher rank”, J. Phys. A: Math. Theor., 47:27 (2014), 275201, 47 pp., arXiv: 1312.2484 | DOI | MR
[18] Kh. S. Nirov, A. V. Razumov, “Quantum groups and functional relations for lower rank”, J. Geom. Phys., 112 (2017), 1–28, arXiv: 1412.7342 | DOI | MR
[19] A. Klümper, Kh. S. Nirov, A. V. Razumov, “Reduced qKZ equation: general case”, J. Phys. A: Math. Gen., 53:2 (2020), 015202, 35 pp., arXiv: 1905.06014 | DOI | MR
[20] A. V. Razumov, “Reduced {qKZ} equation and genuine {qKZ} equation”, J. Phys. A: Math. Theor., 53:40 (2020), 405204, 32 pp., arXiv: 2004.02624 | DOI | MR
[21] N. Yu. Reshetikhin, “Metod funktsionalnykh uravnenii v teorii tochno reshaemykh kvantovykh sistem”, ZhETF, 84:3 (1983), 1190–1201 | MR
[22] N. Yu. Reshetikhin, “A method of functional equations in the theory of exactly solvable quantum systems”, Lett. Math. Phys., 7:3 (1983), 205–213 | DOI | MR
[23] P. P. Kulish, N. Yu. Reshetikhin, “O $GL_3$-invariantnykh resheniyakh uravneniya Yanga-Bakstera i assotsiirovannykh kvantovykh sistemakh”, Zap. nauchn. sem. LOMI, 120 (1982), 92–121 | DOI | MR
[24] V. V. Bazhanov, N. Reshetikhin, “Restricted solid-on-solid models connected with simply laced algebras and conformal field theory”, J. Phys. A: Math. Gen., 23:9 (1990), 1477–1492 | DOI | MR
[25] A. Klümper, P. A. Pearce, “Conformal weights of {RSOS} lattice models and their fusion hierarchies”, Phys. A, 183:3 (1992), 304–350 | DOI | MR
[26] A. Kuniba, T. Nakanishi, J. Suzuki, “Functional relations in solvable lattice models. I. Functional relations and representation theory”, Internat. J. Modern Phys. A, 9:30 (1994), 5215–5266, arXiv: hep-th/9309137 | DOI | MR
[27] A. Kuniba, T. Nakanishi, J. Suzuki, “$T$-systems and $Y$-systems in integrable systems”, J. Phys A: Math. Theor., 44:10 (2011), 103001, 146 pp., arXiv: 1010.1344 | DOI | MR
[28] Kh. S. Nirov, A. V. Razumov, “Quantum groups and functional relations for lower rank”, J. Geom. Phys., 112 (2017), 1–28, arXiv: 1412.7342 | DOI | MR
[29] E. Frenkel, D. Hernandez, “Baxter's relations and spectra of quantum integrable models”, Duke Math. J., 164:12 (2015), 2407–2460, arXiv: 1308.3444 | DOI | MR
[30] D. Hernandez, M. Jimbo, “Asymptotic representations and Drinfeld rational fractions”, Compos. Math., 148:5 (2012), 1593–1623, arXiv: 1104.1891 | DOI | MR | Zbl
[31] M. Jimbo, “A $q$-analogue of $\mathrm U(\mathfrak{gl}(N+1))$, Hecke algebra, and the Yang–Baxter equation”, Lett. Math. Phys., 11:3 (1986), 247–252 | DOI | MR
[32] A. N. Leznov, M. V. Savelev, “Ob odnoi parametrizatsii kompaktnykh grupp”, Funkts. analiz i ego pril., 8:4 (1974), 87–88 | DOI | MR | Zbl
[33] R. M. Kaufman, “O raspredelenii $\{\sqrt p\}$”, Matem. zametki, 26:4 (1979), 497–504 | DOI | MR | Zbl
[34] V. N. Tolstoi, “Ekstremalnye proektory dlya kontragredientnykh algebr i superalgebr Li konechnogo rosta”, UMN, 44:1(265) (1989), 211–212 | DOI | MR | Zbl
[35] Kh. S. Nirov, A. V. Razumov, “Quantum groups, {V}erma modules and $q$-oscillators: general linear case”, J. Phys. A: Math. Theor., 50:30 (2017), 305201, 19 pp., arXiv: 1610.02901 | DOI | MR
[36] H. Yamane, “A Poincaré–Birkhoff–Witt theorem for quantized universal enveloping algebras of type $A_N$”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 25:3 (1989), 503–520 | DOI | MR
[37] J.-P. Serre, Complex Semisimple Lie Algebras, Springer Monographs in Mathematics, Springer, Berlin, 2001 | DOI | MR
[38] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9, Springer, New York, 1978 | MR
[39] V. G. Kac, Infinite-Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge, 1990 | DOI | MR
[40] V. N. Tolstoi, S. M. Khoroshkin, “Universalnaya $R$-matritsa dlya kvantovannykh neskruchennykh affinnykh algebr Li”, Funkts. analiz i ego pril., 26:1 (1992), 85–88 | DOI | MR | Zbl
[41] S. M. Khoroshkin, V. N. Tolstoy, “On Drinfeld's realization of quantum affine algebras”, J. Geom. Phys., 11:1–4 (1993), 445–452 | DOI | MR
[42] S. Khoroshkin, V. N. Tolstoy, Twisting of quantum (super)algebras. Connection of Drinfeld's and Cartan–Weyl realizations for quantum affine algebras, arXiv: hep-th/9404036
[43] J. Beck, “Convex bases of PBW type for quantum affine algebras”, Commun. Math. Phys., 165:3 (1994), 193–199, arXiv: hep-th/9407003 | DOI | MR | Zbl
[44] I. Damiani, “La $R$-matrice pour les algèbres quantiques de type affine non tordu”, Ann. Sci. École Norm. Sup., 31:4 (1998), 493–523 | DOI | MR
[45] V. G. Drinfel'd, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, USA, August 3–11, 1986), v. 1, ed. A. M. Gleason, AMS, Providence, RI, 1986, 798–820 | MR
[46] V. G. Drinfeld, “Novaya realizatsiya yangianov i kvantovannykh affinnykh algebr”, Dokl. AN SSSR, 296:1 (1987), 13–17 | MR | Zbl
[47] P. D. Lax, Linear Algebra and Its Applications, Wiley, Hoboken, NJ, 2007 | MR
[48] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “Oscillator versus prefundamental representations”, J. Math. Phys., 57:11 (2016), 111702, 23 pp., arXiv: 1512.04446 | DOI | MR
[49] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “Oscillator versus prefundamental representations II. Arbitrary higher ranks”, J. Math. Phys., 58:9 (2017), 093504, 23 pp., arXiv: 1701.02627 | DOI | MR
[50] E. Frenkel, N. Reshetikhin, “The $q$-characters of representations of quantum affine algebras and deformations of $\mathcal{W}$-algebras”, Recent Developments in Quantum Affine Algebras and Related Topics (North Carolina State University, May 21–24, 1998), Contemporary Mathematics, 248, eds. N. Jing, K. C. Misra, AMS, Providence, RI, 1999, 163–205, arXiv: math/9810055 | DOI | MR
[51] P. I. Etingof, I. B. Frenkel, A. A. Kirillov, Jr., Lectures on Representation Theory and Knizhnik–Zamolodchikov Equations, Mathematical Surveys and Monographs, 58, AMS, Providence, RI, 1998 | DOI | MR
[52] Kh. S. Nirov, A. V. Razumov, “Vertex models and spin chains in formulas and pictures”, SIGMA, 15 (2019), 068, 67 pp., arXiv: 1811.09401 | DOI | MR
[53] T. Tanisaki, “Killing forms, Harish–Chandra homomorphisms and universal $R$-matrices for quantum algebras”, Infinite Analysis (Research Institute for Mathematical Sciences, Kyoto University, June–August, 1991), Advanced Series in Mathematical Physics, 16, eds. A. Tsuchiya, T. Eguchi, M. Jimbo, World Sci., Singapore, 1992, 941–962
[54] V. Chari, A. Pressley, A Quide to Quantum Groups, Cambridge Univ. Press, 1994 | MR
[55] R. A. Usmani, “Inversion of a tridiagonal Jacobi matrix”, Linear Algebra Appl., 212/213 (1994), 413–414 | DOI | MR
[56] M. Rosso, “An analogue of B.G.G. resolution for the quantum ${SL(N)}$-group”, Symplectic Geometry and Mathematical Physics (Aix-en-Provence, France, June 11–15, 1990), Progress in Mathematics, 99, eds. P. Donato, C. Duval, J. Elhadad, G. M. Tynman, Birkhäuser, Boston, 1991, 422–432 | MR
[57] F. Malikov, “Quantum groups: singular vectors and BGG resolution”, Internat. J. Modern Phys. A, 07:supp01b (1992), 623–643 | DOI
[58] I. Heckenberger, S. Kolb, “On the Berstein–Gelfand–Gelfand resolution for Kac–Moody algebras and quantized enveloping algebras”, Transform. Groups, 12:4 (2007), 647–655, arXiv: math/0605460 | DOI | MR