Mots-clés : elliptic solutions.
@article{TMF_2021_208_2_a7,
author = {V. V. Prokofev and A. V. Zabrodin},
title = {Elliptic solutions of {the~Toda} lattice hierarchy and the~elliptic {Ruijsenaars{\textendash}Schneider} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {282--309},
year = {2021},
volume = {208},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a7/}
}
TY - JOUR AU - V. V. Prokofev AU - A. V. Zabrodin TI - Elliptic solutions of the Toda lattice hierarchy and the elliptic Ruijsenaars–Schneider model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 282 EP - 309 VL - 208 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a7/ LA - ru ID - TMF_2021_208_2_a7 ER -
%0 Journal Article %A V. V. Prokofev %A A. V. Zabrodin %T Elliptic solutions of the Toda lattice hierarchy and the elliptic Ruijsenaars–Schneider model %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 282-309 %V 208 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a7/ %G ru %F TMF_2021_208_2_a7
V. V. Prokofev; A. V. Zabrodin. Elliptic solutions of the Toda lattice hierarchy and the elliptic Ruijsenaars–Schneider model. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 282-309. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a7/
[1] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, Kinokuniya, Tokyo; North-Holland, Amsterdam–New York–Oxford, 1984, 1–95 | DOI | MR | Zbl
[2] H. Airault, H. P. McKean, J. Moser, “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Commun. Pure Appl. Math., 30:1 (1977), 95–148 | DOI | MR
[3] F. Calogero, “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR
[4] F. Calogero, “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento, 13:11 (1975), 411–415 | DOI | MR
[5] J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16:2 (1975), 197–220 | DOI | MR
[6] M. A. Olshanetsky, A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR
[7] I. M. Krichever, “O ratsionalnykh resheniyakh uravneniya Kadomtseva–Petviashvili i ob integriruemykh sistemakh $N$ chastits na pryamoi”, Funkts. analiz i ego pril., 12:1 (1978), 76–78 | DOI | MR | Zbl
[8] D. V. Chudnovsky, G. V. Chudnovsky, “Pole expansions of nonlinear partial differential equations”, Nuovo Cimento B, 40 (1977), 339–350 | DOI | MR
[9] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego prilozh., 14:4 (1980), 45–54 | DOI | MR | Zbl
[10] T. Shiota, “Calogero–Moser hierarchy and KP hierarchy”, J. Math. Phys., 35:11 (1994), 5844–5849 | DOI | MR
[11] L. Haine, “KP trigonometric solitons and an adelic flag manifold”, SIGMA, 3 (2007), 015, 15 pp., arXiv: nlin.SI/0701054 | DOI | MR
[12] A. Zabrodin, “KP hierarchy and trigonometric Calogero–Moser hierarchy”, J. Math. Phys., 61:4 (2020), 043502, 13 pp., arXiv: 1906.09846 | DOI | MR
[13] V. Prokofev, A. Zabrodin, Elliptic solutions to the KP hierarchy and elliptic Calogero–Moser model, arXiv: 2102.03784
[14] I. M. Krichever, A. V. Zabrodin, “Spinovoe obobschenie modeli Ruisenarsa–Shnaidera, neabeleva dvumerizovannaya tsepochka Tody i predstavleniya algebry Sklyanina”, UMN, 50:6(306) (1995), 3–56 | DOI | MR | Zbl
[15] A. Zabrodin, “Elliptic solutions to integrable nonlinear equations and many-body systems”, J. Geom. Phys., 146 (2019), 103506, 26 pp., arXiv: 1905.11383 | DOI | MR
[16] S. N. M. Ruijsenaars, H. Schneider, “A new class of integrable systems and its relation to solitons”, Ann. Phys., 170 (2), 370–405 | DOI | MR
[17] S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Commun. Math. Phys., 110:2 (1987), 191–213 | DOI | MR
[18] P. Iliev, “Rational Ruijsenaars–Schneider hierarchy and bispectral difference operators”, Phys. D, 229:2 (2007), 184–190, arXiv: math-ph/0609011 | DOI | MR
[19] A. Zabrodin, “The master $T$-operator for inhomogeneous $XXX$ spin chain and mKP hierarchy”, SIGMA, 10 (2014), 006, 18 pp., arXiv: 1310.6988 | DOI | MR
[20] V. Prokofev, A. Zabrodin, “Toda lattice hierarchy and trigonometric Ruijsenaars–Schneider hierarchy”, J. Phys. A: Math. Theor., 52:49 (2019), 495202, 21 pp., arXiv: 1907.06621 | DOI | MR
[21] A. V. Zabrodin, “O matrichnoi modifitsirovannoi ierarkhii Kadomtseva–Petviashvili”, TMF, 199:3 (2019), 343–356 | DOI | DOI | MR
[22] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Non-Linear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13–16, 1981), eds. M. Satō, M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR
[23] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci. Kyoto, 19:3 (1983), 943–1001 | DOI | MR