Elliptic solutions of the Toda lattice hierarchy and the elliptic Ruijsenaars–Schneider model
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 282-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider solutions of the 2D Toda lattice hierarchy that are elliptic functions of the “zeroth” time $t_0=x$. It is known that their poles as functions of $t_1$ move as particles of the elliptic Ruijsenaars–Schneider model. The goal of this paper is to extend this correspondence to the level of hierarchies. We show that the Hamiltonians that govern the dynamics of poles with respect to the $m$th hierarchical times $t_m$ and $\bar t_m$ of the 2D Toda lattice hierarchy are obtained from the expansion of the spectral curve for the Lax matrix of the Ruijsenaars–Schneider model at the marked points.
Keywords: Toda lattice hierarchy, Ruijsenaars–Schneider model
Mots-clés : elliptic solutions.
@article{TMF_2021_208_2_a7,
     author = {V. V. Prokofev and A. V. Zabrodin},
     title = {Elliptic solutions of {the~Toda} lattice hierarchy and the~elliptic {Ruijsenaars{\textendash}Schneider} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {282--309},
     year = {2021},
     volume = {208},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a7/}
}
TY  - JOUR
AU  - V. V. Prokofev
AU  - A. V. Zabrodin
TI  - Elliptic solutions of the Toda lattice hierarchy and the elliptic Ruijsenaars–Schneider model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 282
EP  - 309
VL  - 208
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a7/
LA  - ru
ID  - TMF_2021_208_2_a7
ER  - 
%0 Journal Article
%A V. V. Prokofev
%A A. V. Zabrodin
%T Elliptic solutions of the Toda lattice hierarchy and the elliptic Ruijsenaars–Schneider model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 282-309
%V 208
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a7/
%G ru
%F TMF_2021_208_2_a7
V. V. Prokofev; A. V. Zabrodin. Elliptic solutions of the Toda lattice hierarchy and the elliptic Ruijsenaars–Schneider model. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 282-309. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a7/

[1] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, Kinokuniya, Tokyo; North-Holland, Amsterdam–New York–Oxford, 1984, 1–95 | DOI | MR | Zbl

[2] H. Airault, H. P. McKean, J. Moser, “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Commun. Pure Appl. Math., 30:1 (1977), 95–148 | DOI | MR

[3] F. Calogero, “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR

[4] F. Calogero, “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento, 13:11 (1975), 411–415 | DOI | MR

[5] J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16:2 (1975), 197–220 | DOI | MR

[6] M. A. Olshanetsky, A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR

[7] I. M. Krichever, “O ratsionalnykh resheniyakh uravneniya Kadomtseva–Petviashvili i ob integriruemykh sistemakh $N$ chastits na pryamoi”, Funkts. analiz i ego pril., 12:1 (1978), 76–78 | DOI | MR | Zbl

[8] D. V. Chudnovsky, G. V. Chudnovsky, “Pole expansions of nonlinear partial differential equations”, Nuovo Cimento B, 40 (1977), 339–350 | DOI | MR

[9] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego prilozh., 14:4 (1980), 45–54 | DOI | MR | Zbl

[10] T. Shiota, “Calogero–Moser hierarchy and KP hierarchy”, J. Math. Phys., 35:11 (1994), 5844–5849 | DOI | MR

[11] L. Haine, “KP trigonometric solitons and an adelic flag manifold”, SIGMA, 3 (2007), 015, 15 pp., arXiv: nlin.SI/0701054 | DOI | MR

[12] A. Zabrodin, “KP hierarchy and trigonometric Calogero–Moser hierarchy”, J. Math. Phys., 61:4 (2020), 043502, 13 pp., arXiv: 1906.09846 | DOI | MR

[13] V. Prokofev, A. Zabrodin, Elliptic solutions to the KP hierarchy and elliptic Calogero–Moser model, arXiv: 2102.03784

[14] I. M. Krichever, A. V. Zabrodin, “Spinovoe obobschenie modeli Ruisenarsa–Shnaidera, neabeleva dvumerizovannaya tsepochka Tody i predstavleniya algebry Sklyanina”, UMN, 50:6(306) (1995), 3–56 | DOI | MR | Zbl

[15] A. Zabrodin, “Elliptic solutions to integrable nonlinear equations and many-body systems”, J. Geom. Phys., 146 (2019), 103506, 26 pp., arXiv: 1905.11383 | DOI | MR

[16] S. N. M. Ruijsenaars, H. Schneider, “A new class of integrable systems and its relation to solitons”, Ann. Phys., 170 (2), 370–405 | DOI | MR

[17] S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Commun. Math. Phys., 110:2 (1987), 191–213 | DOI | MR

[18] P. Iliev, “Rational Ruijsenaars–Schneider hierarchy and bispectral difference operators”, Phys. D, 229:2 (2007), 184–190, arXiv: math-ph/0609011 | DOI | MR

[19] A. Zabrodin, “The master $T$-operator for inhomogeneous $XXX$ spin chain and mKP hierarchy”, SIGMA, 10 (2014), 006, 18 pp., arXiv: 1310.6988 | DOI | MR

[20] V. Prokofev, A. Zabrodin, “Toda lattice hierarchy and trigonometric Ruijsenaars–Schneider hierarchy”, J. Phys. A: Math. Theor., 52:49 (2019), 495202, 21 pp., arXiv: 1907.06621 | DOI | MR

[21] A. V. Zabrodin, “O matrichnoi modifitsirovannoi ierarkhii Kadomtseva–Petviashvili”, TMF, 199:3 (2019), 343–356 | DOI | DOI | MR

[22] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Non-Linear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13–16, 1981), eds. M. Satō, M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR

[23] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci. Kyoto, 19:3 (1983), 943–1001 | DOI | MR