Quantum coin flipping, qubit measurement, and generalized
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 261-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of Hadamard quantum coin measurement in $n$ trials, with an arbitrary number of repeated consecutive last states, is formulated in terms of Fibonacci sequences for duplicated states, Tribonacci numbers for triplicated states, and $N$-Bonacci numbers for arbitrary $N$-plicated states. The probability formulas for arbitrary positions of repeated states are derived in terms of the Lucas and Fibonacci numbers. For a generic qubit coin, the formulas are expressed by the Fibonacci and more general, $N$-Bonacci polynomials in qubit probabilities. The generating function for probabilities, the Golden Ratio limit of these probabilities, and the Shannon entropy for corresponding states are determined. Using a generalized Born rule and the universality of the $n$-qubit measurement gate, we formulate the problem in terms of generic $n$-qubit states and construct projection operators in a Hilbert space, constrained on the Fibonacci tree of the states. The results are generalized to qutrit and qudit coins described by generalized Fibonacci-$N$-Bonacci sequences.
Keywords: Fibonacci numbers, quantum coin, qubit, qudit, quantum measurement, Tribonacci numbers, $N$-Bonacci numbers.
Mots-clés : qutrit
@article{TMF_2021_208_2_a6,
     author = {O. K. Pashaev},
     title = {Quantum coin flipping, qubit measurement, and generalized},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {261--281},
     year = {2021},
     volume = {208},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a6/}
}
TY  - JOUR
AU  - O. K. Pashaev
TI  - Quantum coin flipping, qubit measurement, and generalized
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 261
EP  - 281
VL  - 208
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a6/
LA  - ru
ID  - TMF_2021_208_2_a6
ER  - 
%0 Journal Article
%A O. K. Pashaev
%T Quantum coin flipping, qubit measurement, and generalized
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 261-281
%V 208
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a6/
%G ru
%F TMF_2021_208_2_a6
O. K. Pashaev. Quantum coin flipping, qubit measurement, and generalized. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 261-281. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a6/

[1] O. K. Pashaev, S. Nalci, “Golden quantum oscillator and Binet–Fibonacci calculus”, J. Phys A: Math. Theor., 45:1 (2012), 015303, 23 pp., arXiv: 1107.4389 | DOI | MR

[2] O. K. Pashaev, “Quantum calculus of Fibonacci divisors and infinite hierarchy of bosonic-fermionic golden quantum oscillators”, Internat. J. Geom. Methods Modern Phys., 18:5 (2021), 2150075, 32 pp. | DOI | MR

[3] A. de Moivre, The Doctrine of Chanses: Or, A Method of Calculating the Probabilities of Events in Play, Chelsea Publ., New York, 1967 | MR

[4] S. F. Kennedy, M. W. Stafford, “Coin flipping, dynamical systems and the Fibonacci numbers”, Math. Mag., 67:5 (1994), 380–382 | DOI | MR

[5] Y. Aharonov, L. Davidovich, N. Zagury, “Quantum random walks”, Phys. Rev. A, 48:2 (1993), 1687–1690 | DOI

[6] C. Di Franco, M. Mc Gettrick, T. Machida, Th. Busch, “Alternate two-dimensional quantum walk with a single-qubit coin”, Phys. Rev. A, 84:4 (2011), 042337, 8 pp. | DOI

[7] S. E. Venegas-Andraca, “Quantum walks: a comprehensive review”, Quantum Inf. Process., 11:5 (2012), 1015–1106 | DOI | MR

[8] V. N. Chernega, O. V. Man'ko, V. I. Man'ko, “Probability representation of quantum states as a renaissance of hidden variables – God plays coins”, J. Russ. Laser Res., 40:2 (2019), 107–120, arXiv: 1904.09788 | DOI

[9] A. Albrecht, D. Phillips, “Origin of probabilities and their application to the multiverse”, Phys. Rev. D, 90:12 (2014), 123514, 7 pp. | DOI

[10] D. Deutsch, “Uncertainty in quantum measurements”, Phys. Rev. Lett., 50:9 (1983), 631–633 | DOI | MR

[11] N. D. Mermin, Quantum Computer Science, Cambridge Univ. Press, Cambridge, 2007 | DOI | MR