Integrable extensions of classical elliptic integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 245-260

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider two particular examples of general construction proposed in arXiv:2012.15529. We consider the integrable extensions of the classical elliptic Calogero-Moser model of N particles with spin and the integrable Euler-Arnold top related to the group SL(N,C). The extended systems has additional N-1 degrees of freedom and can be described in terms of the Darboux variables.
Keywords: Hitchin systems, Euler–Arnold top.
Mots-clés : Calogero–Moser model
@article{TMF_2021_208_2_a5,
     author = {M. A. Olshanetsky},
     title = {Integrable extensions of classical elliptic integrable systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {245--260},
     publisher = {mathdoc},
     volume = {208},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a5/}
}
TY  - JOUR
AU  - M. A. Olshanetsky
TI  - Integrable extensions of classical elliptic integrable systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 245
EP  - 260
VL  - 208
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a5/
LA  - ru
ID  - TMF_2021_208_2_a5
ER  - 
%0 Journal Article
%A M. A. Olshanetsky
%T Integrable extensions of classical elliptic integrable systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 245-260
%V 208
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a5/
%G ru
%F TMF_2021_208_2_a5
M. A. Olshanetsky. Integrable extensions of classical elliptic integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a5/