Mots-clés : Calogero–Moser model
@article{TMF_2021_208_2_a5,
author = {M. A. Olshanetsky},
title = {Integrable extensions of classical elliptic integrable systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {245--260},
year = {2021},
volume = {208},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a5/}
}
M. A. Olshanetsky. Integrable extensions of classical elliptic integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a5/
[1] N. Hitchin, “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR
[2] N. Nekrasov, “Holomorphic bundles and many-body systems”, Commun. Math. Phys., 180:3 (1996), 587–604, arXiv: hep-th/9503157 | DOI | MR
[3] J. Gibbons, T. Hermsen, “A generalisation of the Calogero–Moser system”, Phys. D, 11:3 (1984), 337–348 | DOI | MR
[4] S. Wojciechowski, “An integrable marriage of the Euler equations with the Calogero–Moser system”, Phys. Lett. A, 111:3 (1985), 101–103 | DOI | MR
[5] A. Levin, M. Olshanetsky, A. Zotov, Generalizations of parabolic Higgs bundles, real structures and integrability, arXiv: 2012.15529
[6] L. Fehér, B. G Pusztai, “A class of Calogero type reductions of free motion on a simple Lie group”, Lett. Math. Phys., 79:3 (2007), 263–277, arXiv: math-ph/0609085 | DOI | MR
[7] S. Kharchev, A. Levin, M. Olshanetsky, A. Zotov, “Calogero–Sutherland system with two types interacting spins”, Pisma v ZhETF, 106:3 (2017), 173–174, arXiv: 1706.08793 | DOI | DOI
[8] A. G. Reyman, M. A. Semenov-Tian-Shansky, “Group-theoretical methods in the theory of finite-dimensional integrable systems”, Dynamical Systems. VII. Integrable Systems, Nonholonomic Dynamical Systems, Encyclopaedia of Mathematical Sciences, 16, eds. V. I. Arnold, S. P. Novikov, Springer, Berlin, 1994, 116–225 | DOI | MR
[9] B. Khesin, A. Levin, M. Olshanetsky, “Bihamiltonian structures and quadratic algebras in hydrodynamics and on non-commutative torus”, Commun. Math. Phys., 250:3 (2004), 581–612 | DOI | MR
[10] M. Berger, “Les espaces symétriques noncompacts”, Ann. Sci. École Norm. Sup. (3), 74:2 (1957), 85–177 | DOI | MR
[11] C. Khelgason, Differentsialnaya geometriya, gruppy Li i simmetricheskie prostranstva, Faktorial, M., 2005 | MR