Integrable extensions of classical elliptic integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 245-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we consider two particular examples of general construction proposed in arXiv:2012.15529. We consider the integrable extensions of the classical elliptic Calogero-Moser model of N particles with spin and the integrable Euler-Arnold top related to the group SL(N,C). The extended systems has additional N-1 degrees of freedom and can be described in terms of the Darboux variables.
Keywords: Hitchin systems, Euler–Arnold top.
Mots-clés : Calogero–Moser model
@article{TMF_2021_208_2_a5,
     author = {M. A. Olshanetsky},
     title = {Integrable extensions of classical elliptic integrable systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {245--260},
     year = {2021},
     volume = {208},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a5/}
}
TY  - JOUR
AU  - M. A. Olshanetsky
TI  - Integrable extensions of classical elliptic integrable systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 245
EP  - 260
VL  - 208
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a5/
LA  - ru
ID  - TMF_2021_208_2_a5
ER  - 
%0 Journal Article
%A M. A. Olshanetsky
%T Integrable extensions of classical elliptic integrable systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 245-260
%V 208
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a5/
%G ru
%F TMF_2021_208_2_a5
M. A. Olshanetsky. Integrable extensions of classical elliptic integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a5/

[1] N. Hitchin, “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR

[2] N. Nekrasov, “Holomorphic bundles and many-body systems”, Commun. Math. Phys., 180:3 (1996), 587–604, arXiv: hep-th/9503157 | DOI | MR

[3] J. Gibbons, T. Hermsen, “A generalisation of the Calogero–Moser system”, Phys. D, 11:3 (1984), 337–348 | DOI | MR

[4] S. Wojciechowski, “An integrable marriage of the Euler equations with the Calogero–Moser system”, Phys. Lett. A, 111:3 (1985), 101–103 | DOI | MR

[5] A. Levin, M. Olshanetsky, A. Zotov, Generalizations of parabolic Higgs bundles, real structures and integrability, arXiv: 2012.15529

[6] L. Fehér, B. G Pusztai, “A class of Calogero type reductions of free motion on a simple Lie group”, Lett. Math. Phys., 79:3 (2007), 263–277, arXiv: math-ph/0609085 | DOI | MR

[7] S. Kharchev, A. Levin, M. Olshanetsky, A. Zotov, “Calogero–Sutherland system with two types interacting spins”, Pisma v ZhETF, 106:3 (2017), 173–174, arXiv: 1706.08793 | DOI | DOI

[8] A. G. Reyman, M. A. Semenov-Tian-Shansky, “Group-theoretical methods in the theory of finite-dimensional integrable systems”, Dynamical Systems. VII. Integrable Systems, Nonholonomic Dynamical Systems, Encyclopaedia of Mathematical Sciences, 16, eds. V. I. Arnold, S. P. Novikov, Springer, Berlin, 1994, 116–225 | DOI | MR

[9] B. Khesin, A. Levin, M. Olshanetsky, “Bihamiltonian structures and quadratic algebras in hydrodynamics and on non-commutative torus”, Commun. Math. Phys., 250:3 (2004), 581–612 | DOI | MR

[10] M. Berger, “Les espaces symétriques noncompacts”, Ann. Sci. École Norm. Sup. (3), 74:2 (1957), 85–177 | DOI | MR

[11] C. Khelgason, Differentsialnaya geometriya, gruppy Li i simmetricheskie prostranstva, Faktorial, M., 2005 | MR