Integrable extensions of classical elliptic integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 245-260
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we consider two particular examples of general
construction proposed in arXiv:2012.15529.
We consider the integrable extensions of the classical elliptic Calogero-Moser model
of N particles with spin and
the integrable Euler-Arnold top related to the group SL(N,C). The
extended systems has additional N-1 degrees of freedom and can be described in terms of the Darboux
variables.
Keywords:
Hitchin systems, Euler–Arnold top.
Mots-clés : Calogero–Moser model
Mots-clés : Calogero–Moser model
@article{TMF_2021_208_2_a5,
author = {M. A. Olshanetsky},
title = {Integrable extensions of classical elliptic integrable systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {245--260},
publisher = {mathdoc},
volume = {208},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a5/}
}
M. A. Olshanetsky. Integrable extensions of classical elliptic integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a5/