Algebraic quantum theory with maximal frequency
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 233-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an algebraic theory with a maximal mass (modified Dirac theory with a $\gamma_5$-expansion of mass). We consider properties of spinors and give the necessary proofs. Quantization is performed.
Mots-clés : maximal mass, Dirac equation
Keywords: non-Hermitian Hamiltonian.
@article{TMF_2021_208_2_a4,
     author = {G. A. Kravtsova},
     title = {Algebraic quantum theory with maximal frequency},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {233--244},
     year = {2021},
     volume = {208},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a4/}
}
TY  - JOUR
AU  - G. A. Kravtsova
TI  - Algebraic quantum theory with maximal frequency
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 233
EP  - 244
VL  - 208
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a4/
LA  - ru
ID  - TMF_2021_208_2_a4
ER  - 
%0 Journal Article
%A G. A. Kravtsova
%T Algebraic quantum theory with maximal frequency
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 233-244
%V 208
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a4/
%G ru
%F TMF_2021_208_2_a4
G. A. Kravtsova. Algebraic quantum theory with maximal frequency. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 233-244. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a4/

[1] V. G. Kadyshevsky, Fundamental length hypothesis and new concept of gauge vector field, Pub. 78/22-THY, Fermilab, Batavia, IL, 1978 | MR

[2] V. G. Kadyshevsky, M. D. Mateev, V. N. Rodionov, A. S. Sorin, Towards a maximal mass model, arXiv: 0708.4205

[3] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246, arXiv: physics/9712001 | DOI | MR

[4] C. M. Bender, “Making sense of non-Hermitian Hamiltonians”, Rep. Prog. Phys., 70:6 (2007), 947–1018 | DOI | MR

[5] C. M. Bender, H. F. Jones, R. J. Rivers, “Dual $\mathscr{PT}$-symmetric quantum field theories”, Phys. Lett. B, 625:3–4 (2005), 333–340, arXiv: hep-th/0508105 | DOI | MR

[6] V. N. Rodionov, “Non-Hermitian $\mathcal{PT}$-symmetric Dirac–Pauli Hamiltonians with real energy eigenvalues in the magnetic field”, Internat. J. Theor. Phys., 54:11 (2015), 3907–3919 | DOI | MR

[7] V. N. Rodionov, “Exact solutions for non-Hermitian Dirac–Pauli equation in an intensive magnetic field”, Phys. Scr., 90:4 (2015), 045302, arXiv: 1406.0383 | DOI

[8] V. N. Rodionov, G. A. Kravtsova, “Algebraicheskii i geometricheskii podkhody k neermitovoi $\mathcal{PT}$-simmetrichnoi relyativistskoi kvantovoi mekhanike s maksimalnoi massoi”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astr., 2014, no. 3, 20–25 | DOI

[9] V. N. Rodionov, G. A. Kravtsova, “K razvitiyu neermitovoi algebraicheskoi teorii s $\gamma_5$-rasshireniem massy”, TMF, 182:1 (2015), 124–139 | DOI | DOI | MR

[10] V. N. Rodionov, G. A. Kravtsova, “Algebraicheskaya PT-simmetrichnaya kvantovaya teoriya s maksimalnoi massoi”, EChAYa, 47:2 (2016), 251–296 | DOI

[11] V. N. Rodionov, G. A. Kravtsova, A. M. Mandel, “Ogranichenie spektra mass fermionov v RT-simmetrichnykh sistemakh i ikh primenenie v izuchenii temnoi materii”, TMF, 198:3 (2019), 473–488 | DOI | DOI | MR

[12] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR

[13] M. A. Markov, Maximon-type scenario of the universe (Big Bang, Small Bang, Micro Bang), INR, M., 1981

[14] A. Mostafazadeh, “Pseudo-Hermitian representation of quantum mechanics”, Internat. J. Geom. Meth. Modern Phys., 7:7 (2010), 1191–1306, arXiv: 0810.5643 | DOI | MR

[15] V. N. Rodionov, “Ekzoticheskie fermiony v teorii V. G. Kadyshevskogo i vozmozhnosti ikh obnaruzheniya”, EChAYa, 48:2 (2017), 283–310 | DOI