On the evolution of states of controlled qubits
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 218-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the interaction between the qubit and the electromagnetic field in a waveguide in accordance with the Lee model using the fact that photons in the waveguide are quanta of a massive scalar neutral field. We study the case where the energy of the excited state of the qubit is larger than the photon mass. We find the stationary state of the "qubit $+$ electromagnetic field " system. We describe the evolution of nonstationary states under initial conditions of the general form. We present results of numerical calculations under the initial conditions of two types: 1 the qubit is in the excited state, and there is no photon; 2) the qubit is in the ground state, and the photon is present. The study is related to the consistent quantum theory of the qubit control with the goal to force qubits to make transitions from one state to another.
Keywords: qubit, electromagnetic field in the waveguide, qubit control.
@article{TMF_2021_208_2_a3,
     author = {A. I. Kirillov and E. V. Polyachenko},
     title = {On the~evolution of states of controlled qubits},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {218--232},
     year = {2021},
     volume = {208},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a3/}
}
TY  - JOUR
AU  - A. I. Kirillov
AU  - E. V. Polyachenko
TI  - On the evolution of states of controlled qubits
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 218
EP  - 232
VL  - 208
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a3/
LA  - ru
ID  - TMF_2021_208_2_a3
ER  - 
%0 Journal Article
%A A. I. Kirillov
%A E. V. Polyachenko
%T On the evolution of states of controlled qubits
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 218-232
%V 208
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a3/
%G ru
%F TMF_2021_208_2_a3
A. I. Kirillov; E. V. Polyachenko. On the evolution of states of controlled qubits. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 218-232. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a3/

[1] A. I. Kirillov, E. V. Polyachenko, “O vremeni prebyvaniya kvantovoi chastitsy v zadannoi oblasti”, TMF, 118:1 (1999), 51–66 | DOI | DOI | Zbl

[2] P. Facchi, M. S. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics”, Phys. Rev. A, 94:4 (2016), 043839, 10 pp. | DOI

[3] A. S. Kholevo, “Kvantovaya informatika: proshloe, nastoyaschee, buduschee”, V mire nauki, 2008, no. 7, 69–75

[4] V. S. Kalashnikov, A. V. Prusov, Tekhnicheskaya elektrodinamika. Napravlyayuschie sistemy i napravlyaemye volny, SPbGUAP, SPb., 2001

[5] Dzh. Dzhekson, Klassicheskaya elektrodinamika, Mir, M., 1965 | MR

[6] A. N. Pechen, N. B. Ilin, “Kogerentnoe upravlenie kubitom svobodno ot lovushek”, Tr. MIAN, 285 (2014), 244–252 | DOI | DOI

[7] E. T. Jaynes, F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser”, Proc. IEEE, 51:1 (1963), 89–109 | DOI

[8] T. D. Lee, “Some special examples in renormalizable field theory”, Phys. Rev., 95:5 (1954), 1329–1334 | DOI

[9] G. Barton, Dispersionnye metody v teorii polya, Atomizdat, M., 1968 | MR

[10] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, v. I, Preobrazovaniya Fure, Laplasa, Mellina, Nauka, M., 1969 | MR

[11] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1966

[12] B. M. Garraway, “Nonperturbative decay of an atomic system in a cavity”, Phys. Rev. A, 55:3 (1997), 2290–2303 | DOI

[13] N. G. Van Kampen, “On the theory of stationary waves in plasmas”, Physica, 21:6 (1955), 949–963 | MR

[14] K. M. Case, “Plasma oscillations”, Ann. Phys., 7:3 (1959), 349–364 | DOI | MR

[15] E. V. Polyachenko, I. G. Shukhman, O. I. Borodina, “Damped perturbations in stellar systems: genuine modes and Landau-damped waves”, Monthly Notices Roy. Astron. Soc., 503:1 (2021), 660–668 | DOI