Representations of Bessel functions via the Maslov canonical operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 196-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We illustrate the construction and application of the Maslov canonical operator with examples of Bessel functions. For real values of the argument, we derive representations of these functions in terms of a canonical operator and, as a consequence, obtain the well-known asymptotics.
Keywords: semiclassical asymptotics, WKB approximation, canonical operator, Bessel function.
@article{TMF_2021_208_2_a2,
     author = {S. Yu. Dobrokhotov and D. S. Minenkov and V. E. Nazaikinskii},
     title = {Representations of {Bessel} functions via the {Maslov} canonical operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {196--217},
     year = {2021},
     volume = {208},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a2/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - D. S. Minenkov
AU  - V. E. Nazaikinskii
TI  - Representations of Bessel functions via the Maslov canonical operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 196
EP  - 217
VL  - 208
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a2/
LA  - ru
ID  - TMF_2021_208_2_a2
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A D. S. Minenkov
%A V. E. Nazaikinskii
%T Representations of Bessel functions via the Maslov canonical operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 196-217
%V 208
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a2/
%G ru
%F TMF_2021_208_2_a2
S. Yu. Dobrokhotov; D. S. Minenkov; V. E. Nazaikinskii. Representations of Bessel functions via the Maslov canonical operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 196-217. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a2/

[1] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965 | Zbl

[2] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Lenand, M., 2017 | MR | Zbl

[3] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[4] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | MR

[5] A. S. Mischenko, B. Yu. Sternin, V. E. Shatalov, Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M., 1978 | MR

[6] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR

[7] Wolfram Mathematica https://www.wolfram.com/mathematica/

[8] MATLAB https://www.mathworks.com/products/matlab.html

[9] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Kanonicheskii operator Maslova v proizvolnykh koordinatakh lagranzheva mnogoobraziya”, Dokl. RAN, 466:6 (2016), 641–644 | DOI | MR | Zbl

[10] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Novye integralnye predstavleniya kanonicheskogo operatora Maslova v osobykh kartakh”, Izv. RAN. Ser. matem., 81:2 (2016), 53–96 | DOI | DOI | MR

[11] A. Yu. Anikin, S. Yu. Dobrokhotov, A. V. Tsvetkova, V. E. Nazaikinskii, “Ravnomernaya asimptotika v vide funktsii Eiri dlya kvaziklassicheskikh svyazannykh sostoyanii v odnomernykh i radialno-simmetrichnykh zadachakh”, TMF, 201:3 (2019), 382–414 | DOI | DOI | MR

[12] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Lagranzhevy mnogoobraziya i effektivnye formuly dlya korotkovolnovykh asimptotik v okrestnosti tochki vozvrata kaustiki”, Matem. zametki, 108:3 (2020), 334–359 | DOI | DOI | MR

[13] S. Yu. Dobrokhotov, A. V. Tsvetkova, “O lagranzhevykh mnogoobraziyakh, svyazannykh s asimptotikoi polinomov Ermita”, Matem. zametki, 104:6 (2018), 835–850 | DOI | DOI | MR

[14] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Prostye asimptotiki obobschennogo volnovogo uravneniya s vyrozhdayuscheisya skorostyu i ikh prilozheniya v lineinoi zadache o nabege dlinnykh voln na bereg”, Matem. zametki, 104:4 (2018), 483–504 | DOI | DOI | MR

[15] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Uniformizatsiya uravnenii s granichnym vyrozhdeniem besseleva tipa i kvaziklassicheskie asimptotiki”, Matem. zametki, 107:5 (2020), 780–786 | DOI | DOI | MR

[16] J. Marsden, A. Weinstein, “Reduction on symplectic manifolds with symmetry”, Rep. Math. Phys., 5:1 (1974), 121–130 | DOI | MR

[17] V. I. Arnold, A. N. Varchenko, S. M. Gusein-zade, Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1982 | MR

[18] S. Yu. Dobrokhotov, B. Tirotstsi, A. I. Shafarevich, “Predstavleniya bystroubyvayuschikh funktsii kanonicheskim operatorom Maslova”, Matem. zametki, 82:5 (2007), 792–796 | DOI | DOI | MR | Zbl

[19] S. Yu. Dobrokhotov, G. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI | DOI | MR | Zbl

[20] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[21] Dzh. N. Vatson, Teoriya besselevykh funktsii, IL, M., 1949 | MR | Zbl

[22] V. I. Arnold, “O kharakteristicheskom klasse, vkhodyaschem v usloviya kvantovaniya”, Funkts. analiz i ego prilozh., 1:1 (1967), 1–14 | DOI | MR | Zbl

[23] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR | MR

[24] V. F. Lazutkin, Vypuklyi billiard i sobstvennye funktsii operatora Laplasa, Izd-vo Leningr. un-ta, L., 1981 | MR | Zbl

[25] V. F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, 24, Springer, Berlin, 1993 | MR

[26] S. Yu. Dobrokhotov, G. Makrakis, V. E. Nazaikinskii, “Kanonicheskii operator Maslova, odna formula Khermandera i lokalizatsiya resheniya Berri–Balazha v teorii volnovykh puchkov”, TMF, 180:2 (2014), 162–188 | DOI | DOI | MR

[27] V. E. Nazaikinskii, “Kanonicheskii operator Maslova na lagranzhevykh mnogoobraziyakh v fazovom prostranstve, sootvetstvuyuschem vyrozhdayuschemusya na granitse volnovomu uravneniyu”, Matem. zametki, 96:2 (2014), 261–276 | DOI | DOI | MR | Zbl