@article{TMF_2021_208_2_a2,
author = {S. Yu. Dobrokhotov and D. S. Minenkov and V. E. Nazaikinskii},
title = {Representations of {Bessel} functions via the {Maslov} canonical operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {196--217},
year = {2021},
volume = {208},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a2/}
}
TY - JOUR AU - S. Yu. Dobrokhotov AU - D. S. Minenkov AU - V. E. Nazaikinskii TI - Representations of Bessel functions via the Maslov canonical operator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 196 EP - 217 VL - 208 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a2/ LA - ru ID - TMF_2021_208_2_a2 ER -
%0 Journal Article %A S. Yu. Dobrokhotov %A D. S. Minenkov %A V. E. Nazaikinskii %T Representations of Bessel functions via the Maslov canonical operator %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 196-217 %V 208 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a2/ %G ru %F TMF_2021_208_2_a2
S. Yu. Dobrokhotov; D. S. Minenkov; V. E. Nazaikinskii. Representations of Bessel functions via the Maslov canonical operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 196-217. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a2/
[1] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965 | Zbl
[2] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Lenand, M., 2017 | MR | Zbl
[3] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl
[4] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | MR
[5] A. S. Mischenko, B. Yu. Sternin, V. E. Shatalov, Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M., 1978 | MR
[6] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR
[7] Wolfram Mathematica https://www.wolfram.com/mathematica/
[8] MATLAB https://www.mathworks.com/products/matlab.html
[9] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Kanonicheskii operator Maslova v proizvolnykh koordinatakh lagranzheva mnogoobraziya”, Dokl. RAN, 466:6 (2016), 641–644 | DOI | MR | Zbl
[10] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Novye integralnye predstavleniya kanonicheskogo operatora Maslova v osobykh kartakh”, Izv. RAN. Ser. matem., 81:2 (2016), 53–96 | DOI | DOI | MR
[11] A. Yu. Anikin, S. Yu. Dobrokhotov, A. V. Tsvetkova, V. E. Nazaikinskii, “Ravnomernaya asimptotika v vide funktsii Eiri dlya kvaziklassicheskikh svyazannykh sostoyanii v odnomernykh i radialno-simmetrichnykh zadachakh”, TMF, 201:3 (2019), 382–414 | DOI | DOI | MR
[12] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Lagranzhevy mnogoobraziya i effektivnye formuly dlya korotkovolnovykh asimptotik v okrestnosti tochki vozvrata kaustiki”, Matem. zametki, 108:3 (2020), 334–359 | DOI | DOI | MR
[13] S. Yu. Dobrokhotov, A. V. Tsvetkova, “O lagranzhevykh mnogoobraziyakh, svyazannykh s asimptotikoi polinomov Ermita”, Matem. zametki, 104:6 (2018), 835–850 | DOI | DOI | MR
[14] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Prostye asimptotiki obobschennogo volnovogo uravneniya s vyrozhdayuscheisya skorostyu i ikh prilozheniya v lineinoi zadache o nabege dlinnykh voln na bereg”, Matem. zametki, 104:4 (2018), 483–504 | DOI | DOI | MR
[15] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Uniformizatsiya uravnenii s granichnym vyrozhdeniem besseleva tipa i kvaziklassicheskie asimptotiki”, Matem. zametki, 107:5 (2020), 780–786 | DOI | DOI | MR
[16] J. Marsden, A. Weinstein, “Reduction on symplectic manifolds with symmetry”, Rep. Math. Phys., 5:1 (1974), 121–130 | DOI | MR
[17] V. I. Arnold, A. N. Varchenko, S. M. Gusein-zade, Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1982 | MR
[18] S. Yu. Dobrokhotov, B. Tirotstsi, A. I. Shafarevich, “Predstavleniya bystroubyvayuschikh funktsii kanonicheskim operatorom Maslova”, Matem. zametki, 82:5 (2007), 792–796 | DOI | DOI | MR | Zbl
[19] S. Yu. Dobrokhotov, G. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI | DOI | MR | Zbl
[20] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl
[21] Dzh. N. Vatson, Teoriya besselevykh funktsii, IL, M., 1949 | MR | Zbl
[22] V. I. Arnold, “O kharakteristicheskom klasse, vkhodyaschem v usloviya kvantovaniya”, Funkts. analiz i ego prilozh., 1:1 (1967), 1–14 | DOI | MR | Zbl
[23] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR | MR
[24] V. F. Lazutkin, Vypuklyi billiard i sobstvennye funktsii operatora Laplasa, Izd-vo Leningr. un-ta, L., 1981 | MR | Zbl
[25] V. F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, 24, Springer, Berlin, 1993 | MR
[26] S. Yu. Dobrokhotov, G. Makrakis, V. E. Nazaikinskii, “Kanonicheskii operator Maslova, odna formula Khermandera i lokalizatsiya resheniya Berri–Balazha v teorii volnovykh puchkov”, TMF, 180:2 (2014), 162–188 | DOI | DOI | MR
[27] V. E. Nazaikinskii, “Kanonicheskii operator Maslova na lagranzhevykh mnogoobraziyakh v fazovom prostranstve, sootvetstvuyuschem vyrozhdayuschemusya na granitse volnovomu uravneniyu”, Matem. zametki, 96:2 (2014), 261–276 | DOI | DOI | MR | Zbl