Quadratic algebras based on $SL(NM)$ elliptic quantum $R$-matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 355-364
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a quadratic quantum algebra based on the dynamical $RLL$-relation for the quantum $R$-matrix related to $SL(NM)$-bundles with a nontrivial characteristic class over an elliptic curve. This $R$-matrix simultaneously generalizes the elliptic nondynamical Baxter–Belavin and the dynamical Felder $R$-matrices, and the obtained quadratic relations generalize both the Sklyanin algebra and the relations in the Felder–Tarasov–Varchenko elliptic quantum group, which are reproduced in the respective particular cases $M=1$ and $N=1$.
Keywords:
quantum quadratic algebras, elliptic integrable system, quantum
dynamical $R$-matrix.
@article{TMF_2021_208_2_a10,
author = {I. A. Sechin and A. V. Zotov},
title = {Quadratic algebras based on $SL(NM)$ elliptic quantum $R$-matrices},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--364},
publisher = {mathdoc},
volume = {208},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a10/}
}
TY - JOUR AU - I. A. Sechin AU - A. V. Zotov TI - Quadratic algebras based on $SL(NM)$ elliptic quantum $R$-matrices JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 355 EP - 364 VL - 208 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a10/ LA - ru ID - TMF_2021_208_2_a10 ER -
I. A. Sechin; A. V. Zotov. Quadratic algebras based on $SL(NM)$ elliptic quantum $R$-matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 355-364. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a10/