Quadratic algebras based on $SL(NM)$ elliptic quantum $R$-matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 355-364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a quadratic quantum algebra based on the dynamical $RLL$-relation for the quantum $R$-matrix related to $SL(NM)$-bundles with a nontrivial characteristic class over an elliptic curve. This $R$-matrix simultaneously generalizes the elliptic nondynamical Baxter–Belavin and the dynamical Felder $R$-matrices, and the obtained quadratic relations generalize both the Sklyanin algebra and the relations in the Felder–Tarasov–Varchenko elliptic quantum group, which are reproduced in the respective particular cases $M=1$ and $N=1$.
Keywords: quantum quadratic algebras, elliptic integrable system, quantum dynamical $R$-matrix.
@article{TMF_2021_208_2_a10,
     author = {I. A. Sechin and A. V. Zotov},
     title = {Quadratic algebras based on $SL(NM)$ elliptic quantum $R$-matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--364},
     year = {2021},
     volume = {208},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a10/}
}
TY  - JOUR
AU  - I. A. Sechin
AU  - A. V. Zotov
TI  - Quadratic algebras based on $SL(NM)$ elliptic quantum $R$-matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 355
EP  - 364
VL  - 208
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a10/
LA  - ru
ID  - TMF_2021_208_2_a10
ER  - 
%0 Journal Article
%A I. A. Sechin
%A A. V. Zotov
%T Quadratic algebras based on $SL(NM)$ elliptic quantum $R$-matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 355-364
%V 208
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a10/
%G ru
%F TMF_2021_208_2_a10
I. A. Sechin; A. V. Zotov. Quadratic algebras based on $SL(NM)$ elliptic quantum $R$-matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 355-364. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a10/

[1] R. J. Baxter, “Partition function of the Eight-Vertex lattice model”, Ann. Phys., 70 (1972), 193–228 | DOI | MR

[2] A. A. Belavin, “Dynamical symmetry of Integrable quantum systems”, Nucl. Phys. B, 180:2 (1981), 189–200 | DOI | MR

[3] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. analiz i ego pril., 16:4 (1982), 27–34 | DOI | MR | Zbl

[4] A. V. Odesskii, B. L. Feigin, “Ellipticheskie algebry Sklyanina”, Funkts. analiz i ego pril., 23:3 (1989), 45–54 | DOI | MR | Zbl

[5] Y.-H. Quano, A. Fujii, “Generalized Sklyanin algebra”, Modern Phys. Lett. A, 6:39 (1991), 3635–3640 | DOI | MR

[6] A. V. Zotov, A. M. Levin, M. A. Olshanetskii, Yu. B. Chernyakov, “Kvadratichnye algebry, svyazannye s ellipticheskimi krivymi”, TMF, 156:2 (2008), 163–183, arXiv: ; H. W. Braden, V. A. Dolgushev, M. A. Olshanetsky, A. V. Zotov, “Classical $r$-matrices and the Feigin–Odesskii algebra via Hamiltonian and Poisson reductions”, J. Phys. A: Math. Gen., 36:25 (2003), 6979–7000, arXiv: ; B. Khesin, A. Levin, M. Olshanetsky, “Bihamiltonian structures and quadratic algebras in hydrodynamics and on non-commutative torus”, Commun. Math. Phys., 250:3 (2004), 581–612, arXiv: 0710.1072hep-th/0301121nlin/0309017 | DOI | DOI | MR | Zbl | DOI | MR | DOI | MR

[7] G. Felder, “Conformal field theory and integrable systems associated with elliptic curves”, Proceedings of the International Congress of Mathematicians (Zürich, Switzerland, August 3–11, 1994), ed. S. D. Chatterji, Birkhäuser, Basel, 1995, 1247–1255 ; G. Felder, A. Varchenko, “Elliptic quantum groups and Ruijsenaars models”, J. Stat. Phys., 89 (1997), 963–980, arXiv: q-alg/9704005 | DOI | MR | DOI | MR

[8] V. O. Tarasov, A. N. Varchenko, “Small elliptic quantum group $e_{\tau,\gamma}(\mathfrak{sl}_N)$”, Mosc. Math. J., 1:2 (2001), 243–286, arXiv: math/0011145 | DOI | MR | Zbl

[9] A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Characteristic classes of $SL(N,\mathbb C)$-bundles and quantum dynamical elliptic $R$-matrices”, J. Phys. A: Math. Theor., 46:3 (2013), 035201, 25 pp., arXiv: ; А. В. Зотов, А. В. Смирнов, “Модификации расслоений, эллиптические интегрируемые системы и связанные задачи”, ТМФ, 177:1 (2013), 3–67 ; И. А. Сечин, А. В. Зотов, “${\rm GL}_{NM}$-значная квантовая динамическая $R$-матрица, построенная по решению ассоциативного уравнения Янга–Бакстера”, УМН, 74:4(448) (2019), 189–190 1208.5750 | DOI | MR | DOI | DOI | MR | Zbl | DOI | DOI | MR

[10] I. Sechin, A. Zotov, “$R$-matrix-valued Lax pairs and long-range spin chains”, Phys. Lett. B, 781 (2018), 1–7, arXiv: ; A. Grekov, A. Zotov, “On $R$-matrix valued Lax pairs for Calogero–Moser models”, J. Phys. A, 51:31 (2018), 315202, 26 pp., arXiv: ; A. Grekov, I. Sechin, A. Zotov, “Generalized model of interacting integrable tops”, JHEP, 10 (2019), 081, 32 pp., arXiv: 1801.089081801.002451905.07820 | DOI | MR | DOI | MR | DOI | MR

[11] A. V. Zotov, “Relyativistskie vzaimodeistvuyuschie integriruemye ellipticheskie volchki”, TMF, 201:2 (2019), 175–192, arXiv: ; И. А. Сечин, А. В. Зотов, “Интегрируемая система обобщенных релятивистских взаимодействующих волчков”, ТМФ, 205:1 (2020), 55–67, arXiv: 1910.082462011.09599 | DOI | DOI | MR | DOI | DOI | MR