On the~quantum $\mathfrak{osp}(1|2\ell)$ Toda chain
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 180-195
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The orthosymplectic Lie superalgebra $\mathfrak{osp}(1|\,2\ell)$ is the closest superanalogue of standard Lie algebras. We demonstrate that the corresponding $\mathfrak{osp}(1|\,2\ell)$ Toda chain is an instance of the $BC_\ell$ Toda chain. The underlying reason for this relation is discussed.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
orthosymplectic Lie superalgebra, $BC$-type root system, quantum Toda chain.
                    
                  
                
                
                @article{TMF_2021_208_2_a1,
     author = {A. A. Gerasimov and D. R. Lebedev and S. V. Oblezin},
     title = {On the~quantum $\mathfrak{osp}(1|2\ell)$ {Toda} chain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {180--195},
     publisher = {mathdoc},
     volume = {208},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a1/}
}
                      
                      
                    TY  - JOUR
AU  - A. A. Gerasimov
AU  - D. R. Lebedev
AU  - S. V. Oblezin
TI  - On the~quantum $\mathfrak{osp}(1|2\ell)$ Toda chain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 180
EP  - 195
VL  - 208
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a1/
LA  - ru
ID  - TMF_2021_208_2_a1
ER  - 
                      
                      
                    A. A. Gerasimov; D. R. Lebedev; S. V. Oblezin. On the~quantum $\mathfrak{osp}(1|2\ell)$ Toda chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 180-195. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a1/
                  
                