Sigma models as Gross–Neveu models
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 165-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the correspondence between integrable sigma models with complex homogeneous target spaces and the chiral bosonic (and possibly mixed bosonic/fermionic) Gross–Neveu models. Mathematically, these are models with quiver variety phase spaces, which reduce to more conventional sigma models in special cases. We discuss the geometry of the models as well as their trigonometric and elliptic deformations, the Ricci flow, and the inclusion of fermions.
Keywords: sigma model, integrable model, quiver variety, Ricci flow.
Mots-clés : Gross–Neveu model
@article{TMF_2021_208_2_a0,
     author = {D. V. Bykov},
     title = {Sigma models as {Gross{\textendash}Neveu} models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {165--179},
     year = {2021},
     volume = {208},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a0/}
}
TY  - JOUR
AU  - D. V. Bykov
TI  - Sigma models as Gross–Neveu models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 165
EP  - 179
VL  - 208
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a0/
LA  - ru
ID  - TMF_2021_208_2_a0
ER  - 
%0 Journal Article
%A D. V. Bykov
%T Sigma models as Gross–Neveu models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 165-179
%V 208
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a0/
%G ru
%F TMF_2021_208_2_a0
D. V. Bykov. Sigma models as Gross–Neveu models. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 165-179. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a0/

[1] D. V. Bykov, “Sigma-modeli prostranstv flagov i nilpotentnye orbity”, Trudy MIAN, 309 (2020), 89–98, arXiv: 1911.07768 | DOI | DOI | MR

[2] D. Bykov, “Quantum flag manifold $\sigma$-models and Hermitian Ricci flow”, arXiv: 2006.14124

[3] D. Bykov, “The $\mathbb{CP}^{n-1}$-model with fermions: a new look”, To appear in Adv. Theor. Math. Phys., arXiv: 2009.04608

[4] I. Affleck, D. Bykov, K. Wamer, “Flag manifold sigma models: spin chains and integrable theories”, arXiv: 2101.11638

[5] H. Nakajima, “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras”, Duke Math. J., 76:2 (1994), 365–416 | DOI | MR

[6] E. Abdalla, M. C. B. Abdalla, K. D. Rothe, Nonperturbative Methods in Two Dimensional Quantum Field Theory, World Sci., Singapore, 1991 | MR

[7] D. J. Gross, A. Neveu, “Dynamical symmetry breaking in asymptotically free field theories”, Phys. Rev. D, 10:10 (1974), 3235–3253 | DOI

[8] E. Witten, “Chiral symmetry, the $1/n$ expansion, and the $\mathrm{SU}(N)$ thirring model”, Nucl. Phys. B, 145:1 (1978), 110–118 | DOI

[9] N. A. Nekrasov, Lectures on curved beta-gamma systems, pure spinors, and anomalies, arXiv: hep-th/0511008

[10] B. Fu, “A survey on symplectic singularities and symplectic resolutions”, Ann. Math. Blaise Pascal, 13:2 (2006), 209–236 | DOI | MR | Zbl

[11] P. Breitenlohner, D. Maison, “On nonlinear $\sigma$-models arising in (super-)gravity”, Commun. Math. Phys., 209 (2000), 785–810, arXiv: gr-qc/9806002 | DOI | MR

[12] P. Breitenlohner, D. Maison, G. W. Gibbons, “$4$-dimensional black holes from Kaluza–Klein theories”, Commun. Math. Phys., 120:2 (1988), 295–333 | DOI | MR

[13] O. Brodbeck, M. Zagermann, “Dimensionally reduced gravity, Hermitian symmetric spaces and the Ashtekar variables”, Class. Quant. Grav., 17:14 (2000), 2749–2763, arXiv: gr-qc/9911118 | DOI | MR

[14] A. Arvanitoyeorgos, “New invariant Einstein metrics on generalized flag manifolds”, Trans. Amer. Math. Soc., 337:2 (1993), 981–995 | DOI | MR

[15] V. E. Zakharov, A. V. Mikhailov, “Variatsionnyi printsip dlya uravnenii, integriruemykh metodom obratnoi zadachi”, Funkts. analiz i ego pril., 14:1 (1980), 55–56 | DOI | MR | Zbl

[16] L. Faddeev, N. Reshetikhin, “Integrability of the principal chiral field model in $(1+1)$-dimension”, Ann. Phys., 167:2 (1986), 227–256 | DOI | MR

[17] C. Appadu, T. J. Hollowood, D. Price, D. C. Thompson, “Quantum anisotropic sigma and lambda models as spin chains”, J. Phys. A: Math. Theor., 51:40 (2018), 405401, 42 pp., arXiv: 1802.06016 | DOI | MR | Zbl

[18] V. Caudrelier, M. Stoppato, B. Vicedo, “On the Zakharov–Mikhailov action: 4d Chern–Simons origin and covariant Poisson algebra of the Lax connection”, arXiv: 2012.04431

[19] O. Fukushima, J.-I. Sakamoto, K. Yoshida, “Faddeev–Reshetikhin model from a 4D Chern–Simons theory”, JHEP, 02 (2021), 115, 18 pp., arXiv: 2012.07370 | DOI

[20] L. A. Takhtadzhan, D. V. Fadeev, Gamiltonov podkhod v teorii solitonov, Nauka, M, 1986 | MR | MR

[21] A. A. Belavin, V. G. Drinfeld, “O resheniyakh klassicheskogo uravneniya Yanga–Bakstera dlya prostykh algebr Li”, Funkts. analiz i ego pril., 16:3 (1982), 1–29 | DOI | MR | Zbl

[22] I. V. Cherednik, “Relyativistski-invariantnye kvaziklassicheskie predely integriruemykh dvumernykh kvantovykh modelei”, TMF, 47:2 (1981), 225–229 | DOI | MR

[23] C. Klimčík, “On integrability of the Yang–Baxter $\sigma$-model”, J. Math. Phys., 50:4 (2009), 043508, 22 pp., arXiv: 0802.3518 | DOI

[24] C. Klimčík, “Integrability of the bi-Yang–Baxter sigma-model”, Lett. Math. Phys., 104:9 (2014), 1095–1106, arXiv: 1402.2105 | DOI | MR

[25] K. Sfetsos, “Integrable interpolations: From exact CFTs to non-Abelian T-duals”, Nucl. Phys. B, 880 (2014), 225–246, arXiv: 1312.4560 | DOI | MR

[26] F. Delduc, M. Magro, B. Vicedo, “On classical $q$-deformations of integrable $\sigma$-models”, JHEP, 11 (2013), 192, 37 pp., arXiv: 1308.3581 | DOI | MR

[27] K. Zarembo, “Integrability in sigma-models”, Integrability: From Statistical Systems to Gauge Theory (Les Houches, France, 6 June – 1 July, 2016), Les Houches Lecture Notes, 106, eds. P. Dorey, G. Korchemsky, N. Nekrasov, V. Schomerus, D. Serban, L. Cugliandolo, Oxford Univ. Press, Oxford, 2019, 205–247, arXiv: 1712.07725 | DOI | MR

[28] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, New York, 2002 | MR

[29] S. V. Ketov, Quantum Non-linear Sigma-Models From Quantum Field Theory to Supersymmetry, Conformal Field Theory, Black Holes and Strings, Springer, Berlin, 2000 | DOI | MR

[30] V. Fateev, E. Onofri, Al. B. Zamolodchikov, “Integrable deformations of the $\mathrm{O}(3)$ sigma model. The sausage model”, Nucl. Phys. B, 406:3 (1993), 521–565 | DOI | MR

[31] V. A. Fateev, “The sigma model (dual) representation for a two-parameter family of integrable quantum field theories”, Nucl. Phys. B, 473:3 (1996), 509–538 | DOI | MR

[32] G. Valent, C. C. Klimčík, R. Squellari, “One loop renormalizability of the Poisson–Lie sigma models”, Phys. Lett. B, 678:1 (2009), 143–148, arXiv: 0902.1459 | DOI | MR

[33] S. L. Lukyanov, “The integrable harmonic map problem versus Ricci flow”, Nucl. Phys. B, 865:2 (2012), 308–329, arXiv: 1205.3201 | DOI | MR

[34] B. Hoare, N. Levine, A. A. Tseytlin, “Integrable 2d sigma models: quantum corrections to geometry from RG flow”, Nucl. Phys. B, 949 (2019), 114798, 17 pp., arXiv: 1907.04737 | DOI | MR

[35] B. Hoare, N. Levine, A. A. Tseytlin, “Sigma models with local couplings: a new integrability-RG flow connection”, JHEP, 11 (2020), 020, 35 pp., arXiv: 2008.01112 | DOI | MR

[36] F. Delduc, S. Lacroix, K. Sfetsos, K. Siampos, “RG flows of integrable $\sigma$-models and the twist function”, JHEP, 02 (2021), 065, 45 pp., arXiv: 2010.07879 | DOI

[37] F. Hassler, “RG flow of integrable $\mathcal{E}$-models”, Phys. Lett. B, 818 (2021), 136367, arXiv: 2012.10451 | DOI

[38] K. Costello, M. Yamazaki, Gauge theory and integrability, III, arXiv: 1908.02289

[39] K. Pohlmeyer, “Integrable Hamiltonian systems and interactions through quadratic constraints”, Commun. Math. Phys., 46:3 (1976), 207–221 | DOI | MR

[40] D. Bykov, “Complex structures and zero-curvature equations for $\sigma$-models”, Phys. Lett. B, 760 (2016), 341–344, arXiv: 1605.01093 | DOI

[41] A. G. Bytsko, “Predstavlenie nulevoi krivizny dlya nelineinoi $O(3)$ sigma-modeli”, Zap. nauchn. sem. POMI, 215 (1994), 100–114, arXiv: hep-th/9403101 | DOI | MR | Zbl

[42] F. Delduc, T. Kameyama, S. Lacroix, M. Magro, B. Vicedo, “Ultralocal Lax connection for para-complex $\mathbb Z_T$-cosets”, Nucl. Phys. B, 949 (2019), 114821, 14 pp., arXiv: 1909.00742 | DOI | MR

[43] V. V. Bazhanov, G. A. Kotousov, S. L. Lukyanov, “Quantum transfer-matrices for the sausage model”, JHEP, 01 (2018), 021, 88 pp., arXiv: 1706.09941 | DOI | MR

[44] A. D'adda, P. Di Vecchia, M. Lüscher, “Confinement and chiral symmetry breaking in $CP^{n_1}$ models with quarks”, Nucl. Phys. B, 152:1 (1979), 125–144 | DOI

[45] N. Andrei, J. H. Lowenstein, “Diagonalization of the chiral-invariant Gross–Neveu Hamiltonian”, Phys. Rev. Lett., 43:23 (1979), 1698–1701 | DOI

[46] C. Destri, H. J. de Vega, “Light-cone lattices and the exact solution of chiral fermion and sigma models”, J. Phys. A: Math. Gen., 22:9 (1989), 1329–1353 | DOI | MR