Mots-clés : Gross–Neveu model
@article{TMF_2021_208_2_a0,
author = {D. V. Bykov},
title = {Sigma models as {Gross{\textendash}Neveu} models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {165--179},
year = {2021},
volume = {208},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a0/}
}
D. V. Bykov. Sigma models as Gross–Neveu models. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 2, pp. 165-179. http://geodesic.mathdoc.fr/item/TMF_2021_208_2_a0/
[1] D. V. Bykov, “Sigma-modeli prostranstv flagov i nilpotentnye orbity”, Trudy MIAN, 309 (2020), 89–98, arXiv: 1911.07768 | DOI | DOI | MR
[2] D. Bykov, “Quantum flag manifold $\sigma$-models and Hermitian Ricci flow”, arXiv: 2006.14124
[3] D. Bykov, “The $\mathbb{CP}^{n-1}$-model with fermions: a new look”, To appear in Adv. Theor. Math. Phys., arXiv: 2009.04608
[4] I. Affleck, D. Bykov, K. Wamer, “Flag manifold sigma models: spin chains and integrable theories”, arXiv: 2101.11638
[5] H. Nakajima, “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras”, Duke Math. J., 76:2 (1994), 365–416 | DOI | MR
[6] E. Abdalla, M. C. B. Abdalla, K. D. Rothe, Nonperturbative Methods in Two Dimensional Quantum Field Theory, World Sci., Singapore, 1991 | MR
[7] D. J. Gross, A. Neveu, “Dynamical symmetry breaking in asymptotically free field theories”, Phys. Rev. D, 10:10 (1974), 3235–3253 | DOI
[8] E. Witten, “Chiral symmetry, the $1/n$ expansion, and the $\mathrm{SU}(N)$ thirring model”, Nucl. Phys. B, 145:1 (1978), 110–118 | DOI
[9] N. A. Nekrasov, Lectures on curved beta-gamma systems, pure spinors, and anomalies, arXiv: hep-th/0511008
[10] B. Fu, “A survey on symplectic singularities and symplectic resolutions”, Ann. Math. Blaise Pascal, 13:2 (2006), 209–236 | DOI | MR | Zbl
[11] P. Breitenlohner, D. Maison, “On nonlinear $\sigma$-models arising in (super-)gravity”, Commun. Math. Phys., 209 (2000), 785–810, arXiv: gr-qc/9806002 | DOI | MR
[12] P. Breitenlohner, D. Maison, G. W. Gibbons, “$4$-dimensional black holes from Kaluza–Klein theories”, Commun. Math. Phys., 120:2 (1988), 295–333 | DOI | MR
[13] O. Brodbeck, M. Zagermann, “Dimensionally reduced gravity, Hermitian symmetric spaces and the Ashtekar variables”, Class. Quant. Grav., 17:14 (2000), 2749–2763, arXiv: gr-qc/9911118 | DOI | MR
[14] A. Arvanitoyeorgos, “New invariant Einstein metrics on generalized flag manifolds”, Trans. Amer. Math. Soc., 337:2 (1993), 981–995 | DOI | MR
[15] V. E. Zakharov, A. V. Mikhailov, “Variatsionnyi printsip dlya uravnenii, integriruemykh metodom obratnoi zadachi”, Funkts. analiz i ego pril., 14:1 (1980), 55–56 | DOI | MR | Zbl
[16] L. Faddeev, N. Reshetikhin, “Integrability of the principal chiral field model in $(1+1)$-dimension”, Ann. Phys., 167:2 (1986), 227–256 | DOI | MR
[17] C. Appadu, T. J. Hollowood, D. Price, D. C. Thompson, “Quantum anisotropic sigma and lambda models as spin chains”, J. Phys. A: Math. Theor., 51:40 (2018), 405401, 42 pp., arXiv: 1802.06016 | DOI | MR | Zbl
[18] V. Caudrelier, M. Stoppato, B. Vicedo, “On the Zakharov–Mikhailov action: 4d Chern–Simons origin and covariant Poisson algebra of the Lax connection”, arXiv: 2012.04431
[19] O. Fukushima, J.-I. Sakamoto, K. Yoshida, “Faddeev–Reshetikhin model from a 4D Chern–Simons theory”, JHEP, 02 (2021), 115, 18 pp., arXiv: 2012.07370 | DOI
[20] L. A. Takhtadzhan, D. V. Fadeev, Gamiltonov podkhod v teorii solitonov, Nauka, M, 1986 | MR | MR
[21] A. A. Belavin, V. G. Drinfeld, “O resheniyakh klassicheskogo uravneniya Yanga–Bakstera dlya prostykh algebr Li”, Funkts. analiz i ego pril., 16:3 (1982), 1–29 | DOI | MR | Zbl
[22] I. V. Cherednik, “Relyativistski-invariantnye kvaziklassicheskie predely integriruemykh dvumernykh kvantovykh modelei”, TMF, 47:2 (1981), 225–229 | DOI | MR
[23] C. Klimčík, “On integrability of the Yang–Baxter $\sigma$-model”, J. Math. Phys., 50:4 (2009), 043508, 22 pp., arXiv: 0802.3518 | DOI
[24] C. Klimčík, “Integrability of the bi-Yang–Baxter sigma-model”, Lett. Math. Phys., 104:9 (2014), 1095–1106, arXiv: 1402.2105 | DOI | MR
[25] K. Sfetsos, “Integrable interpolations: From exact CFTs to non-Abelian T-duals”, Nucl. Phys. B, 880 (2014), 225–246, arXiv: 1312.4560 | DOI | MR
[26] F. Delduc, M. Magro, B. Vicedo, “On classical $q$-deformations of integrable $\sigma$-models”, JHEP, 11 (2013), 192, 37 pp., arXiv: 1308.3581 | DOI | MR
[27] K. Zarembo, “Integrability in sigma-models”, Integrability: From Statistical Systems to Gauge Theory (Les Houches, France, 6 June – 1 July, 2016), Les Houches Lecture Notes, 106, eds. P. Dorey, G. Korchemsky, N. Nekrasov, V. Schomerus, D. Serban, L. Cugliandolo, Oxford Univ. Press, Oxford, 2019, 205–247, arXiv: 1712.07725 | DOI | MR
[28] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, New York, 2002 | MR
[29] S. V. Ketov, Quantum Non-linear Sigma-Models From Quantum Field Theory to Supersymmetry, Conformal Field Theory, Black Holes and Strings, Springer, Berlin, 2000 | DOI | MR
[30] V. Fateev, E. Onofri, Al. B. Zamolodchikov, “Integrable deformations of the $\mathrm{O}(3)$ sigma model. The sausage model”, Nucl. Phys. B, 406:3 (1993), 521–565 | DOI | MR
[31] V. A. Fateev, “The sigma model (dual) representation for a two-parameter family of integrable quantum field theories”, Nucl. Phys. B, 473:3 (1996), 509–538 | DOI | MR
[32] G. Valent, C. C. Klimčík, R. Squellari, “One loop renormalizability of the Poisson–Lie sigma models”, Phys. Lett. B, 678:1 (2009), 143–148, arXiv: 0902.1459 | DOI | MR
[33] S. L. Lukyanov, “The integrable harmonic map problem versus Ricci flow”, Nucl. Phys. B, 865:2 (2012), 308–329, arXiv: 1205.3201 | DOI | MR
[34] B. Hoare, N. Levine, A. A. Tseytlin, “Integrable 2d sigma models: quantum corrections to geometry from RG flow”, Nucl. Phys. B, 949 (2019), 114798, 17 pp., arXiv: 1907.04737 | DOI | MR
[35] B. Hoare, N. Levine, A. A. Tseytlin, “Sigma models with local couplings: a new integrability-RG flow connection”, JHEP, 11 (2020), 020, 35 pp., arXiv: 2008.01112 | DOI | MR
[36] F. Delduc, S. Lacroix, K. Sfetsos, K. Siampos, “RG flows of integrable $\sigma$-models and the twist function”, JHEP, 02 (2021), 065, 45 pp., arXiv: 2010.07879 | DOI
[37] F. Hassler, “RG flow of integrable $\mathcal{E}$-models”, Phys. Lett. B, 818 (2021), 136367, arXiv: 2012.10451 | DOI
[38] K. Costello, M. Yamazaki, Gauge theory and integrability, III, arXiv: 1908.02289
[39] K. Pohlmeyer, “Integrable Hamiltonian systems and interactions through quadratic constraints”, Commun. Math. Phys., 46:3 (1976), 207–221 | DOI | MR
[40] D. Bykov, “Complex structures and zero-curvature equations for $\sigma$-models”, Phys. Lett. B, 760 (2016), 341–344, arXiv: 1605.01093 | DOI
[41] A. G. Bytsko, “Predstavlenie nulevoi krivizny dlya nelineinoi $O(3)$ sigma-modeli”, Zap. nauchn. sem. POMI, 215 (1994), 100–114, arXiv: hep-th/9403101 | DOI | MR | Zbl
[42] F. Delduc, T. Kameyama, S. Lacroix, M. Magro, B. Vicedo, “Ultralocal Lax connection for para-complex $\mathbb Z_T$-cosets”, Nucl. Phys. B, 949 (2019), 114821, 14 pp., arXiv: 1909.00742 | DOI | MR
[43] V. V. Bazhanov, G. A. Kotousov, S. L. Lukyanov, “Quantum transfer-matrices for the sausage model”, JHEP, 01 (2018), 021, 88 pp., arXiv: 1706.09941 | DOI | MR
[44] A. D'adda, P. Di Vecchia, M. Lüscher, “Confinement and chiral symmetry breaking in $CP^{n_1}$ models with quarks”, Nucl. Phys. B, 152:1 (1979), 125–144 | DOI
[45] N. Andrei, J. H. Lowenstein, “Diagonalization of the chiral-invariant Gross–Neveu Hamiltonian”, Phys. Rev. Lett., 43:23 (1979), 1698–1701 | DOI
[46] C. Destri, H. J. de Vega, “Light-cone lattices and the exact solution of chiral fermion and sigma models”, J. Phys. A: Math. Gen., 22:9 (1989), 1329–1353 | DOI | MR