Behaviour of Andreev states for topological phase transition
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 145-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider three one-dimensional superconducting structures: 1) the one with $p$-wave superconductivity; 2) the main experimental model of a nanowire with $s$-wave superconductivity generated by the bulk superconductor due to the proximity effect in an external magnetic field and Rashba spin–orbit interaction; 3) the boundary of a two-dimensional topological insulator with an $s$-wave superconducting order in an external magnetic field. We obtain precise analytic results for the “superconductor–magnetic impurity–superconductor” model. Using the Bogoliubov–de Gennes Hamiltonian, we study the behavior of stable states arising in these structures, with energies near the edges of the energy gap of “electron” (“hole”) type for the first model and “electron plus hole” type for the other two models in the case where the system passes from the topological phase to the trivial one. For the topological phase transition, resonance (decaying) states turn out to play a major role; the spin flip and the change of sign of the charge occur due to the transition of bound states to resonance ones and vice versa with their energy changing to the opposite ones as the gap closes. The results are consistent with the absence of a zero-bias conductance peak in the trivial topological phase observed in a recent experiment.
Keywords: Bogoliubov–de Gennes Hamiltonian, superconducting gap, Andreev bound state, Majorana bound state, resonance state.
@article{TMF_2021_208_1_a9,
     author = {Yu. P. Chuburin and T. S. Tinyukova},
     title = {Behaviour of {Andreev} states for topological phase transition},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {145--162},
     year = {2021},
     volume = {208},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a9/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
AU  - T. S. Tinyukova
TI  - Behaviour of Andreev states for topological phase transition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 145
EP  - 162
VL  - 208
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a9/
LA  - ru
ID  - TMF_2021_208_1_a9
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%A T. S. Tinyukova
%T Behaviour of Andreev states for topological phase transition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 145-162
%V 208
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a9/
%G ru
%F TMF_2021_208_1_a9
Yu. P. Chuburin; T. S. Tinyukova. Behaviour of Andreev states for topological phase transition. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 145-162. http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a9/

[1] S. R. Elliot, M. Franz, “Colloquium: Majorana fermions in nuclear, particle, and solid-state physics”, Rev. Modern Phys., 87:1 (2015), 137–163 | DOI | MR

[2] J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems”, Rep. Prog. Phys., 75:7 (2012), 076501, 36 pp. | DOI

[3] M. Sato, S. Fujimoto, “Majorana fermions and topology in superconductors”, J. Phys. Soc. Japan, 85:7 (2016), 072001, 32 pp. | DOI

[4] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, Y. Oreg, “Majorana zero modes in superconductor-semiconductor heterostructures”, Nat. Rev. Mater., 3:5 (2018), 52–68 | DOI

[5] F. von Oppen, Y. Peng, F. Pientka, “Topological superconducting phases in one dimension”, Topological Aspects of Condensed Matter Physics: Lecture Notes of the Les Houches Summer School (École de Physique des Houches, Session CIII, 4–29 August, 2014), eds. C. Chamon, M. O. Goerbig, R. Moessner, L. F. Cugliandolo, Oxford Univ. Press, Oxford, 2017, 389–449

[6] S. Das Sarma, A. Nag, J. D. Sau, “How to infer non-Abelian statistics and topological visibility from tunneling conductance properties of realistic Majorana nanowires”, Phys. Rev. B, 94:3 (2016), 035143, 17 pp. | DOI

[7] K. Sengupta, I. Zutic, H.-J. Kwon, V. M. Yakovenko, S. Das Sarma, “Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors”, Phys. Rev. B, 63:14 (2001), 144531, 6 pp. | DOI

[8] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven, “Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices”, Science, 336:6084 (2012), 1003–1007 | DOI

[9] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman, “Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions”, Nature Phys., 8 (2012), 887–895 | DOI

[10] M. T. Deng, S. Vaiti.{e}kenas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, C. M. Marcus, “Majorana bound state in a coupled quantum-dot hybrid-nanowire system”, Science, 354:6319 (2016), 1557–1562 | DOI

[11] C.-X. Liu, J. D. Sau, T. D. Stanescu, S. Das Sarma, “Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks”, Phys. Rev. B, 96:7 (2017), 075161, 20 pp. | DOI

[12] C. Moore, C. Zeng, T. D. Stanescu, S. Tewari, “Quantized zero bias conductance plateau in semiconductor-superconductor heterostructures without non-Abelian Majorana zero modes”, Phys. Rev. B, 98 (2018), 155314, 6 pp., arXiv: 1804.03164 | DOI

[13] A. Vuik, B. Nijholt, A. R. Akhmerov, M. Wimmer, “Reproducing topological properties with quasi-Majorana states”, SciPost Phys., 7 (2019), 061, 24 pp., arXiv: 1806.02801 | DOI | MR

[14] T. S. Tinyukova, Yu. P. Chuburin, “Rol maioranopodobnykh lokalizovannykh sostoyanii v andreevskom otrazhenii i effekte Dzhozefsona v sluchae topologicheskogo izolyatora”, TMF, 202:1 (2020), 81–97 | DOI | DOI | MR

[15] P. Szumniak, D. Chevallier, D. Loss, J. Klinovaja, “Spin and charge signatures of topological superconductivity in Rashba nanowires”, Phys. Rev. B, 96:4 (2017), 041401, 5 pp. | DOI

[16] M. Serina, D. Loss, J. Klinovaja, “Boundary spin polarization as a robust signature of a topological phase transition in Majorana nanowires”, Phys. Rev. B, 98:3 (2018), 035419, 10 pp. | DOI

[17] D. Puglia, E. A. Martinez, G. C. Ménard et al., Closing of the induced gap in a hybrid superconductor–semiconductor nanowire, arXiv: 2006.01275

[18] Yu. P. Chuburin, “Existence of Majorana bound states near impurities in the case of a small superconducting gap”, Phys. E, 89 (2017), 130–133 | DOI

[19] Yu. P. Chuburin, “Suschestvovanie maioranovskikh lokalizovannykh sostoyanii v sverkhprovodyaschei nanoprovoloke vblizi primesi”, TMF, 197:2 (2018), 279–289 | DOI | DOI | MR

[20] Yu. P. Chuburin, T. S. Tinyukova, “The emergence of bound states in a superconducting gap at the topological insulator edge”, Phys. Lett. A, 384:27 (2020), 126694, 7 pp. | DOI | MR

[21] T. S. Tinyukova, Yu. P. Chuburin, “Vzaimnyi perekhod andreevskikh i maioranovskikh lokalizovannykh sostoyanii v sverkhprovodyaschei scheli”, TMF, 205:3 (2020), 484–501 | DOI | DOI | MR

[22] C. W. J. Beenakker, “Random-matrix theory of Majorana fermions and topological superconductors”, Rev. Modern Phys., 87:3 (2015), 1037–1066 | DOI | MR

[23] T. S. Tinyukova, “Maioranovskie sostoyaniya vblizi primesi v $p$-volnovoi sverkhprovodyaschei nanoprovoloke”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:2 (2018), 222–230 | DOI | MR

[24] Dzh. Teilor, Teoriya rasseyaniya: kvantovaya teoriya nerelyativistskikh stolknovenii, Mir, M., 1985

[25] Yu. P. Chuburin, “O malykh vozmuscheniyakh operatora Shredingera s periodicheskim potentsialom”, TMF, 110:3 (1997), 443–453 | DOI | DOI | MR | Zbl

[26] S. D. Sarma, A. Nag, J. D. Sau, “How to infer non-Abelian statistics and topological visibility from tunneling conductance properties of realistic Majorana nanowires”, Phys. Rev. B, 94:3 (2016), 035143, 17 pp. | DOI

[27] D. Chevallier, P. Simon, C. Bena, “From Andreev bound states to Majorana fermions in topological wires on superconducting substrates: A story of mutation”, Phys. Rev. B, 88:16 (2013), 165401, 6 pp. | DOI

[28] R. Aguado, “Majorana quasiparticles in condensed matter”, Riv. Nuovo Cimento, 40:11 (2017), 523–593, arXiv: 1711.00011 | DOI

[29] Yu. N. Demkov, V. N. Ostrovskii, Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo Leningr. un-ta, L., 1975

[30] S. K. Adhikari, M. Casas, A. Puente, A. Rigo, M. Fortes, M. A. Solís, M. de Llano, A. A. Valladares, O. Rojo, “Linear to quadratic crossover of Cooper-pair dispersion relation”, Phys. C, 351:4 (2001), 341–348 | DOI

[31] R. Edvards, Funktsionalnyi analiz: teoriya i prilozheniya, Mir, M., 1969

[32] Yu. P. Chuburin, “Zakon raspada kvazistatsionarnogo sostoyaniya operatora Shredingera dlya kristallicheskoi plenki”, TMF, 151:2 (2007), 248–260 | DOI | DOI | MR | Zbl

[33] G. Tkachov, E. M. Hankiewicz, “Helical Andreev bound states and superconducting Klein tunneling in topological insulator Josephson junctions”, Phys. Rev. B, 88:7 (2013), 075401, 8 pp., arXiv: 1304.1893 | DOI

[34] J. Linder, Yu. Tanaka, T. Yokoyama, A. Sudbo, N. Nagaosa, “Interplay between superconductivity and ferromagnetism on a topological insulator”, Phys. Rev. B, 81:18 (2010), 184525, 11 pp. | DOI

[35] C. T. Olund, E. Zhao, “Current-phase relation for Josephson effect through helical metal”, Phys. Rev. B, 86:21 (2012), 214515, 7 pp. | DOI

[36] F. Crepin, B. Trauzettel, F. Dolcini, “Signatures of Majorana bound states in transport properties of hybrid structures based on helical liquids”, Phys. Rev. B, 89:20 (2014), 205115, 12 pp. | DOI