The law of large numbers for quantum stochastic filtering and control of many-particle systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 97-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There is an extensive literature on the dynamic law of large numbers for systems of quantum particles, that is, on the derivation of an equation describing the limiting individual behavior of particles in a large ensemble of identical interacting particles. The resulting equations are generally referred to as nonlinear Schrödinger equations or Hartree equations, or Gross–Pitaevskii equations. In this paper, we extend some of these convergence results to a stochastic framework. Specifically, we work with the Belavkin stochastic filtering of many-particle quantum systems. The resulting limiting equation is an equation of a new type, which can be regarded as a complex-valued infinite-dimensional nonlinear diffusion of McKean–Vlasov type. This result is the key ingredient for the theory of quantum mean-field games developed by the author in a previous paper.
Keywords: quantum dynamic law of large numbers, quantum filtering, homodyne detection, nonlinear stochastic Schrödinger equation, quantum interacting particles, quantum control, quantum mean-field games, infinite-dimensional McKean–Vlasov diffusion on manifold.
Mots-clés : Belavkin equation
@article{TMF_2021_208_1_a7,
     author = {V. N. Kolokoltsov},
     title = {The~law of large numbers for quantum stochastic filtering and control of many-particle systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {97--121},
     year = {2021},
     volume = {208},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a7/}
}
TY  - JOUR
AU  - V. N. Kolokoltsov
TI  - The law of large numbers for quantum stochastic filtering and control of many-particle systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 97
EP  - 121
VL  - 208
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a7/
LA  - ru
ID  - TMF_2021_208_1_a7
ER  - 
%0 Journal Article
%A V. N. Kolokoltsov
%T The law of large numbers for quantum stochastic filtering and control of many-particle systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 97-121
%V 208
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a7/
%G ru
%F TMF_2021_208_1_a7
V. N. Kolokoltsov. The law of large numbers for quantum stochastic filtering and control of many-particle systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 97-121. http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a7/

[1] H. Spohn, “Kinetic equations from Hamiltonian dynamics”, Rev. Modern Phys., 52:3 (1980), 569–615 | DOI | MR

[2] B. Schlein, “Derivation of effective evolution equations from microscopic quantum dynamics”, Evolution Equations, Clay Mathematics Institute Summer School (Eidgenössische Technische Hochschule, Zürich, Switzerland, June 23 – July 18, 2008), Clay Mathematics Proceedings, 17, AMS, Providence, RI, 2013, 511–572, arXiv: 0807.4307 | MR

[3] F. Golse, Th. Paul, “Empirical measures and quantum mechanics: applications to the mean-field limit”, Commun. Math. Phys., 369:3 (2019), 1021–1053 | DOI | MR

[4] V. N. Kolokoltsov, Quantum mean field games, arXiv: 2005.02350

[5] V. N. Kolokoltsov, “Dynamic quantum games”, Dyn. Games Appl., Publ. online: 2021, Open access, 22 pp., arXiv: 2002.00271 | DOI

[6] M. Huang, R. Malhamé, P. E. Caines, “Large population stochastic dynamic games: closed-loop Mckean–Vlasov systems and the Nash certainty equivalence principle”, Commun. Inf. Syst., 6:3 (2006), 221–252 | DOI | MR

[7] J.-M. Lasry, P-L. Lions, “Jeux à champ moyen. I. Le cas stationnaire”, C. R. Math. Acad. Sci. Paris, 343:9 (2006), 619–625 | DOI | MR | Zbl

[8] A. Bensoussan, J. Frehse, P. Yam, Mean Field Games and Mean Field Type Control Theory, Springer, New York, 2013 | DOI | MR

[9] R. Carmona, F. Delarue, Probabilistic Theory of Mean Field Games with Applications I. Mean Field FBSDEs, Control, and Games, Probability Theory and Stochastic Modelling, 83, Springer, New York ; Probabilistic Theory of Mean Field Games with Applications II. Mean Field Games with Common Noise and Master Equations, Probability Theory and Stochastic Modelling, 84, Springer, New York, 2018 | DOI | DOI | MR

[10] D. Gomes, E. A. Pimentel, V. Voskanyan, Regularity Theory for Mean-Field Game Systems, Springer, New York, 2016 | DOI | MR

[11] V. N. Kolokoltsov, O. A. Malafeyev, Many Agent Games in Socio-economic Systems: Corruption, Inspection, Coalition Building, Network Growth, Security, Springer, Cham, 2019 | DOI | MR

[12] V. N. Kolokoltsov, Nonlinear Markov Pocesses and Kinetic Equations, 182, Cambridge Univ. Press, Cambridge, 2010 | DOI | MR

[13] V. Barbu, M. Röckner, D. Zhang, “Stochastic nonlinear Schrödinger equations”, Nonlinear Anal., 136 (2016), 168–194 | DOI | MR

[14] V. Barbu, M. Röckner, D. Zhang, “Optimal bilinear control of nonlinear stochastic Schrödinger equations driven by linear multiplicative noise”, Ann. Probab., 46:4 (2018), 1957–1999 | DOI | MR

[15] Z. Brzeźniak, A. Millet, “On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold”, Potential Anal., 41:2 (2014), 269–315 | DOI | MR

[16] W. Grecksch, H. Lisei, “Stochastic nonlinear equations of Schrödinger type”, Stoch. Anal. Appl., 29:4 (2011), 631–653 | DOI | MR

[17] V. P. Belavkin, “Non-demolition measurement and control in quantum dynamical systems”, Information Complexity and Control in Quantum Physics, Proceedings of the 4th International Seminar on Mathematical Theory of Dynamical Systems and Microphysics (Udine, September 4–13, 1985), CISM International Centre for Mechanical Sciences, 294, eds. A. Blaquiere, S. Diner, G. Lochak, Springer, Wien, 1987, 311–329 | DOI | MR

[18] V. P. Belavkin, “Nondemolition stochastic calculus in Fock space and nonlinear filtering and control in quantum systems”, Stochastic Methods in Mathematics and Physics (Karpacz, Poland, 13–27 January, 1988), eds. R. Guelerak, W. Karwowski, World Sci., Singapore, 1989, 310–324 | MR

[19] V. P. Belavkin, “Quantum stochastic calculus and quantum nonlinear filtering”, J. Multivariate Anal., 42:2 (1992), 171–201 | DOI | MR

[20] V. P. Belavkin, V. N. Kolokol'tsov, “Stochastic evolution as a quasiclassical limit of a boundary value problem for Schrödinger equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5:1 (2002), 61–91 | DOI | MR

[21] C. Pellegrini, “Poisson and diffusion approximation of stochastic master equations with control”, Ann. Henri Poincaré, 10:5 (2009), 995–1025 | DOI | MR

[22] A. Barchielli, V. P. Belavkin, “Measurements continuous in time and a posteriori states in quantum mechanics”, J. Phys. A: Math. Gen., 24:7 (1991), 1495–1514 | DOI | MR

[23] A. S. Holevo, “Statistical inference for quantum processes”, Quantum Aspects of Optical Communications (Paris, France, 26–28 November, 1990), Lecture Notes in Physics, 378, eds. C. Bendjaballah, O. Hirota, S. Reynaud, Springer, Berlin, 1991, 127–137 | MR

[24] M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, H. Mabuchi, “Adaptive homodyne measurement of optical phase”, Phys. Rev. Lett., 89:13 (2002), 133602, 4 pp. | DOI

[25] P. Bushev, D. Rotter, A. Wilson, F. Dubin, C. Becher, J. Eschner, R. Blatt, V. Steixner, P. Rabl, P. Zoller, “Feedback cooling of a singe trapped ion”, Phys. Rev. Lett., 96:4 (2006), 043003, 4 pp. | DOI

[26] H. M. Wiseman, G. J. Milburn, Quantum Measurement and Control, Cambridge Univ. Press, Cambridge, 2010 | MR

[27] A. Barchielli, M. Gregoratti, Quantum Trajectories and Measurements in Continuous Time. The Diffusive Case, Lecture Notes Physics, 782, Springer, Berlin, 2009 | DOI | MR

[28] C. Pellegrini, “Markov chains approximation of jump-diffusion stochastic master equations”, Ann. Inst. Henri Poincaré Probab. Stat., 46:4 (2010), 924–948 | DOI | MR

[29] V. N. Kolokoltsov, “The Lévy–Khintchine type operators with variable Lipschitz continuous coefficients generate linear or nonlinear Markov processes and semigroups”, Prob. Theory Related Fields, 151:1–2 (2011), 95–123, arXiv: 0911.5688 | DOI | MR

[30] P. Pickl, “A simple derivation of mean field limits for quantum systems”, Lett. Math. Phys., 97:2 (2011), 151–164 | DOI | MR

[31] A. Knowles, P. Pickl, “Mean-field dynamics: singular potentials and rate of convergence”, Commun. Math. Phys., 298:1 (2010), 101–138 | DOI | MR

[32] N. U. Ahmed, “Systems governed by mean-field stochastic evolution equations on Hilbert spaces and their optimal control”, Dynam. Systems Appl., 25:1–2 (2016), 61–87 | MR

[33] V. N. Kolokoltsov, Differential Equations on Measures and Functional Spaces, Birkhäuser, Cham, 2019 | DOI | MR