@article{TMF_2021_208_1_a5,
author = {Zhang Yue and Shunlong Luo},
title = {Spin nonclassicality via variance},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {74--84},
year = {2021},
volume = {208},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a5/}
}
Zhang Yue; Shunlong Luo. Spin nonclassicality via variance. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 74-84. http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a5/
[1] L. Mandel, “Sub-Poissonian photon statistics in resonance fluorescence”, Opt. Lett., 4:7 (1979), 205–207 | DOI
[2] L. Mandel, “Non-classical states of the electromagnetic field”, Phys. Scr., 1986:T12 (1986), 34–42 | DOI
[3] M. Hillery, “Nonclassical distance in quantum optics”, Phys. Rev. A, 35:2 (1987), 725–732 | DOI
[4] C. T. Lee, “Measure of the nonclassicality of nonclassical states”, Phys. Rev. A, 44:5 (1991), R2775–R2778 | DOI | MR
[5] N. Lütkenhaus, S. M. Barnett, “Nonclassical effects in phase space”, Phys. Rev. A, 51:4 (1995), 3340–3342 | DOI
[6] V. V. Dodonov, O. V. Man'ko, V. I. Man'ko, A. Wünsche, “Hilbert–Schmidt distance and non-classicality of states in quantum optics”, J. Modern Opt., 47:4 (2000), 633–654 | DOI | MR
[7] P. Marian, T. A. Marian, H. Scutaru, “Quantifying nonclassicality of one-mode Gaussian states of the radiation field”, Phys. Rev. Lett., 88:15 (2002), 153601, 4 pp. | DOI
[8] V. V Dodonov, V. I. Man'ko (eds.), Theory of Nonclassical States of Light, Taylor Francis, London, 2003
[9] J. M. C. Malbouisson, B. Baseia, “On the measure of nonclassicality of field states”, Phys. Scr., 67:2 (2003), 93–98 | DOI
[10] A. Kenfack, K. .{Z}yczkowski, “Negativity of the Wigner function as an indicator of non-classicality”, J. Opt. B: Quantum Semiclass. Opt., 6:10 (2004), 396–404 | DOI | MR
[11] J. K. Asboth, J. Calsamiglia, H. Ritsch, “Computable measure of nonclassicality for light”, Phys. Rev. Lett., 94:17 (2005), 173602, 4 pp. | DOI
[12] M. Boca, I. Ghiu, P. Marian, T. A. Marian, “Quantum Chernoff bound as a measure of nonclassicality for one-mode Gaussian states”, Phys. Rev. A, 79:1 (2009), 014302, 4 pp. | DOI
[13] A. Mari, K. Kieling, B. M. Nielsen, E. S. Polzik, J. Eisert, “Directly estimating nonclassicality”, Phys. Rev. Lett., 106:1 (2011), 010403, 4 pp. | DOI
[14] C. Gehrke, J. Sperling, W. Vogel, “Quantification of nonclassicality”, Phys. Rev. A, 86:5 (2012), 052118, 8 pp. | DOI
[15] W. Vogel, J. Sperling, “Unified quantification of nonclassicality and entanglement”, Phys. Rev. A, 89:5 (2014), 052302, 6 pp. | DOI
[16] H. C. F. Lemos, A. C. L. Almeida, B. Amaral, A. C. Oliveira, “Roughness as classicality indicator of a quantum state”, Phys. Lett. A, 382:12 (2018), 823–836 | DOI | MR
[17] B. Yadin, F. C. Binder, J. Thompson, V. Narasimhachar, M. Gu, M. S. Kim, “Operational resource theory of continuous-variable nonclassicality”, Phys. Rev. X, 8:4 (2018), 041038, 18 pp. | DOI
[18] S. Bose, “Wehrl-entropy-based quantification of nonclassicality for single-mode quantum optical states”, J. Phys. A: Math. Theor., 52:2 (2019), 025303, 17 pp. | DOI | MR
[19] S. Luo, Y. Zhang, “Quantifying nonclassicality via Wigner–Yanase skew information”, Phys. Rev. A, 100:3 (2019), 032116, 8 pp. | DOI | MR
[20] S. Luo, Y. Zhang, “Detecting nonclassicality of light via Lieb's concavity”, Phys. Lett. A, 383:26 (2019), 125836, 5 pp. | DOI | MR
[21] S. Luo, Y. Zhang, “Quantumness of bosonic field states”, Internat. J. Theor. Phys., 59:1 (2020), 206–215 | DOI | MR
[22] Y. Zhang, S. Luo, “Quantum states as observables: their variance and nonclassicality”, Phys. Rev. A, 102:6 (2020), 062211, 6 pp. | DOI | MR
[23] O. Giraud, P. Braun, D. Braun, “Classicality of spin states”, Phys. Rev. A, 78:4 (2008), 042112, 9 pp. | DOI | MR
[24] O. Giraud, P. Braun, D. Braun, “Quantifying quantumness and the quest for Queens of Quantum”, New J. Phys., 12:6 (2010), 063005, 23 pp. | DOI
[25] T. Kiesel, W. Vogel, S. L. Christensen, J.-B. Béguin, J. Appel, E. S. Polzik, “Atomic nonclassicality quasiprobabilities”, Phys. Rev. A, 86:4 (2012), 042108, 5 pp. | DOI
[26] M. Oszmaniec, M. Kuś, “On detection of quasiclassical states”, J. Phys. A: Math. Theor., 45:24 (2012), 244034, 13 pp. | DOI | MR
[27] F. Bohnet-Waldraff, D. Braun, O. Giraud, “Quantumness of spin-$1$ states”, Phys. Rev. A, 93:1 (2016), 012104, 10 pp. | DOI
[28] H. Dai, S. Luo, “Information-theoretic approach to atomic spin nonclassicality”, Phys. Rev. A, 100:6 (2019), 062114, 10 pp. | DOI
[29] P. W. Atkins, J. C. Dobson, “Angular momentum coherent states”, Proc. Roy. Soc. Lond. Ser. A, 321:1546 (1971), 321–340 | DOI | MR
[30] J. M. Radcliffe, “Some properties of spin coherent states”, J. Phys. A: Gen. Phys., 4:2 (1971), 313–332 | DOI | MR
[31] F. T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, “Atomic coherent states in quantum optics”, Phys. Rev. A, 6:6 (1972), 2211–2237 | DOI
[32] R. Gilmore, “Geometry of symmetrized states”, Ann. Phys. (N. Y.), 74:2 (1972), 391–463 | DOI | MR
[33] A. M. Perelomov, “Coherent states for arbitrary Lie group”, Commun. Math. Phys., 26:3 (1972), 222–236 | DOI | MR
[34] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1997 | MR
[35] K. Husimi, “Some formal properties of the density matrix”, Proc. Phys.-Math. Soc. Japan (3), 22:4 (1940), 264–314 | DOI
[36] K. Nemoto, B. C. Sanders, “Superpositions of $SU(3)$ coherent states via a nonlinear evolution”, J. Phys. A: Math. Gen., 34:10 (2001), 2051–2062 | DOI | MR
[37] C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52:1–2 (1988), 479–487 | DOI | MR
[38] T. Tilma, M. J. Everitt, J. H. Samson, W. J. Munro, K. Nemoto, “Wigner functions for arbitrary quantum systems”, Phys. Rev. Lett., 117:18 (2016), 180401, 5 pp. | DOI
[39] E. P. Wigner, M. M. Yanase, “Information contents of distributions”, Proc. Nat. Acad. Sci. USA, 49:6 (1963), 910–918 | DOI | MR
[40] Sh. L. Luo, “Kvantovaya i klassicheskaya neopredelennosti”, TMF, 143:2 (2005), 231–240 | DOI | DOI | MR | Zbl
[41] S. Luo, Y. Sun, “Quantum coherence versus quantum uncertainty”, Phys. Rev. A, 96:2 (2017), 022130, 5 pp. | DOI | MR
[42] S. Luo, Y. Sun, “Coherence and complementarity in state-channel interaction”, Phys. Rev. A, 98:1 (2018), 012113, 8 pp. | DOI
[43] V. V. Dodonov, I. A. Malkin, V. I. Manko, “Even and odd coherent states and excitations of a singular oscillator”, Physica, 72:3 (1974), 597–615 | DOI | MR