Spin nonclassicality via variance
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 74-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Although variance, as one of the most fundamental and ubiquitous quantities in quantifying uncertainty, has been widely used in both classical and quantum physics, there are still new applications awaiting exploration. In this work, by interchanging the roles of the state variable and the observable variable, i.e., by formally regarding any state as an observable (which is rational because any state is a priori a Hermitian operator) and considering the average variance of this state (now in the position of an observable) in all spin coherent states, we introduce a quantifier of spin nonclassicality with respect to a resolution of identity induced by spin coherent states. This quantifier is easy to compute and it admits various operational interpretations, such as the purity deficit, the Tsallis 2-entropy deficit, and the squared norm deficit between the Wigner function and the Husimi function. We reveal several intuitive properties of this quantifier, connect it to the phase-space distribution uncertainty, and illustrate it with some prototypical examples. Various extensions are further indicated.
Keywords: spin nonclassicality, spin coherent states, variance, convexity, resolution of identity.
@article{TMF_2021_208_1_a5,
     author = {Zhang Yue and Shunlong Luo},
     title = {Spin nonclassicality via variance},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--84},
     year = {2021},
     volume = {208},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a5/}
}
TY  - JOUR
AU  - Zhang Yue
AU  - Shunlong Luo
TI  - Spin nonclassicality via variance
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 74
EP  - 84
VL  - 208
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a5/
LA  - ru
ID  - TMF_2021_208_1_a5
ER  - 
%0 Journal Article
%A Zhang Yue
%A Shunlong Luo
%T Spin nonclassicality via variance
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 74-84
%V 208
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a5/
%G ru
%F TMF_2021_208_1_a5
Zhang Yue; Shunlong Luo. Spin nonclassicality via variance. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 74-84. http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a5/

[1] L. Mandel, “Sub-Poissonian photon statistics in resonance fluorescence”, Opt. Lett., 4:7 (1979), 205–207 | DOI

[2] L. Mandel, “Non-classical states of the electromagnetic field”, Phys. Scr., 1986:T12 (1986), 34–42 | DOI

[3] M. Hillery, “Nonclassical distance in quantum optics”, Phys. Rev. A, 35:2 (1987), 725–732 | DOI

[4] C. T. Lee, “Measure of the nonclassicality of nonclassical states”, Phys. Rev. A, 44:5 (1991), R2775–R2778 | DOI | MR

[5] N. Lütkenhaus, S. M. Barnett, “Nonclassical effects in phase space”, Phys. Rev. A, 51:4 (1995), 3340–3342 | DOI

[6] V. V. Dodonov, O. V. Man'ko, V. I. Man'ko, A. Wünsche, “Hilbert–Schmidt distance and non-classicality of states in quantum optics”, J. Modern Opt., 47:4 (2000), 633–654 | DOI | MR

[7] P. Marian, T. A. Marian, H. Scutaru, “Quantifying nonclassicality of one-mode Gaussian states of the radiation field”, Phys. Rev. Lett., 88:15 (2002), 153601, 4 pp. | DOI

[8] V. V Dodonov, V. I. Man'ko (eds.), Theory of Nonclassical States of Light, Taylor Francis, London, 2003

[9] J. M. C. Malbouisson, B. Baseia, “On the measure of nonclassicality of field states”, Phys. Scr., 67:2 (2003), 93–98 | DOI

[10] A. Kenfack, K. .{Z}yczkowski, “Negativity of the Wigner function as an indicator of non-classicality”, J. Opt. B: Quantum Semiclass. Opt., 6:10 (2004), 396–404 | DOI | MR

[11] J. K. Asboth, J. Calsamiglia, H. Ritsch, “Computable measure of nonclassicality for light”, Phys. Rev. Lett., 94:17 (2005), 173602, 4 pp. | DOI

[12] M. Boca, I. Ghiu, P. Marian, T. A. Marian, “Quantum Chernoff bound as a measure of nonclassicality for one-mode Gaussian states”, Phys. Rev. A, 79:1 (2009), 014302, 4 pp. | DOI

[13] A. Mari, K. Kieling, B. M. Nielsen, E. S. Polzik, J. Eisert, “Directly estimating nonclassicality”, Phys. Rev. Lett., 106:1 (2011), 010403, 4 pp. | DOI

[14] C. Gehrke, J. Sperling, W. Vogel, “Quantification of nonclassicality”, Phys. Rev. A, 86:5 (2012), 052118, 8 pp. | DOI

[15] W. Vogel, J. Sperling, “Unified quantification of nonclassicality and entanglement”, Phys. Rev. A, 89:5 (2014), 052302, 6 pp. | DOI

[16] H. C. F. Lemos, A. C. L. Almeida, B. Amaral, A. C. Oliveira, “Roughness as classicality indicator of a quantum state”, Phys. Lett. A, 382:12 (2018), 823–836 | DOI | MR

[17] B. Yadin, F. C. Binder, J. Thompson, V. Narasimhachar, M. Gu, M. S. Kim, “Operational resource theory of continuous-variable nonclassicality”, Phys. Rev. X, 8:4 (2018), 041038, 18 pp. | DOI

[18] S. Bose, “Wehrl-entropy-based quantification of nonclassicality for single-mode quantum optical states”, J. Phys. A: Math. Theor., 52:2 (2019), 025303, 17 pp. | DOI | MR

[19] S. Luo, Y. Zhang, “Quantifying nonclassicality via Wigner–Yanase skew information”, Phys. Rev. A, 100:3 (2019), 032116, 8 pp. | DOI | MR

[20] S. Luo, Y. Zhang, “Detecting nonclassicality of light via Lieb's concavity”, Phys. Lett. A, 383:26 (2019), 125836, 5 pp. | DOI | MR

[21] S. Luo, Y. Zhang, “Quantumness of bosonic field states”, Internat. J. Theor. Phys., 59:1 (2020), 206–215 | DOI | MR

[22] Y. Zhang, S. Luo, “Quantum states as observables: their variance and nonclassicality”, Phys. Rev. A, 102:6 (2020), 062211, 6 pp. | DOI | MR

[23] O. Giraud, P. Braun, D. Braun, “Classicality of spin states”, Phys. Rev. A, 78:4 (2008), 042112, 9 pp. | DOI | MR

[24] O. Giraud, P. Braun, D. Braun, “Quantifying quantumness and the quest for Queens of Quantum”, New J. Phys., 12:6 (2010), 063005, 23 pp. | DOI

[25] T. Kiesel, W. Vogel, S. L. Christensen, J.-B. Béguin, J. Appel, E. S. Polzik, “Atomic nonclassicality quasiprobabilities”, Phys. Rev. A, 86:4 (2012), 042108, 5 pp. | DOI

[26] M. Oszmaniec, M. Kuś, “On detection of quasiclassical states”, J. Phys. A: Math. Theor., 45:24 (2012), 244034, 13 pp. | DOI | MR

[27] F. Bohnet-Waldraff, D. Braun, O. Giraud, “Quantumness of spin-$1$ states”, Phys. Rev. A, 93:1 (2016), 012104, 10 pp. | DOI

[28] H. Dai, S. Luo, “Information-theoretic approach to atomic spin nonclassicality”, Phys. Rev. A, 100:6 (2019), 062114, 10 pp. | DOI

[29] P. W. Atkins, J. C. Dobson, “Angular momentum coherent states”, Proc. Roy. Soc. Lond. Ser. A, 321:1546 (1971), 321–340 | DOI | MR

[30] J. M. Radcliffe, “Some properties of spin coherent states”, J. Phys. A: Gen. Phys., 4:2 (1971), 313–332 | DOI | MR

[31] F. T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, “Atomic coherent states in quantum optics”, Phys. Rev. A, 6:6 (1972), 2211–2237 | DOI

[32] R. Gilmore, “Geometry of symmetrized states”, Ann. Phys. (N. Y.), 74:2 (1972), 391–463 | DOI | MR

[33] A. M. Perelomov, “Coherent states for arbitrary Lie group”, Commun. Math. Phys., 26:3 (1972), 222–236 | DOI | MR

[34] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1997 | MR

[35] K. Husimi, “Some formal properties of the density matrix”, Proc. Phys.-Math. Soc. Japan (3), 22:4 (1940), 264–314 | DOI

[36] K. Nemoto, B. C. Sanders, “Superpositions of $SU(3)$ coherent states via a nonlinear evolution”, J. Phys. A: Math. Gen., 34:10 (2001), 2051–2062 | DOI | MR

[37] C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52:1–2 (1988), 479–487 | DOI | MR

[38] T. Tilma, M. J. Everitt, J. H. Samson, W. J. Munro, K. Nemoto, “Wigner functions for arbitrary quantum systems”, Phys. Rev. Lett., 117:18 (2016), 180401, 5 pp. | DOI

[39] E. P. Wigner, M. M. Yanase, “Information contents of distributions”, Proc. Nat. Acad. Sci. USA, 49:6 (1963), 910–918 | DOI | MR

[40] Sh. L. Luo, “Kvantovaya i klassicheskaya neopredelennosti”, TMF, 143:2 (2005), 231–240 | DOI | DOI | MR | Zbl

[41] S. Luo, Y. Sun, “Quantum coherence versus quantum uncertainty”, Phys. Rev. A, 96:2 (2017), 022130, 5 pp. | DOI | MR

[42] S. Luo, Y. Sun, “Coherence and complementarity in state-channel interaction”, Phys. Rev. A, 98:1 (2018), 012113, 8 pp. | DOI

[43] V. V. Dodonov, I. A. Malkin, V. I. Manko, “Even and odd coherent states and excitations of a singular oscillator”, Physica, 72:3 (1974), 597–615 | DOI | MR