Mots-clés : global solution
@article{TMF_2021_208_1_a4,
author = {Sh. M. Nasibov},
title = {On the~absence of global periodic solutions of a~ {Schr\"odinger-type} nonlinear evolution equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {69--73},
year = {2021},
volume = {208},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a4/}
}
TY - JOUR AU - Sh. M. Nasibov TI - On the absence of global periodic solutions of a Schrödinger-type nonlinear evolution equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 69 EP - 73 VL - 208 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a4/ LA - ru ID - TMF_2021_208_1_a4 ER -
Sh. M. Nasibov. On the absence of global periodic solutions of a Schrödinger-type nonlinear evolution equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 69-73. http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a4/
[1] J. J. Rasmussen, K. Rypdal, “Blow-up in nonlinear Schrodinger equations-I. A general review”, Phys. Scr., 33:6 (1986), 481–497 ; “Blow-up in nonlinear Schrodinger equations-II. Similarity structure of the blow-up singularity”, 498–504 | DOI | MR | MR
[2] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134
[3] V. N. Lugovoi, A. M. Prokhorov, “Teoriya rasprostraneniya moschnogo lazernogo izucheniya v lineinoi srede”, UFN, 11:10 (1973), 203–247 | DOI | DOI
[4] J. Bourgain, “Exponential sums and nonlinear Schrodinger equations”, Geom. Funct. Anal., 3:2 (1993), 157–178 | DOI | MR
[5] A. B. Shabat, “O zadache Koshi dlya uravneniya Ginzburga–Landau”, Dinamika sploshnoi sredy, Vyp. 1, Izd-vo In-ta gidrodinamiki SO RAN, Novosibirsk, 1969, 180–194
[6] Sh. M. Nasibov, “O razrushenii reshenii smeshannoi zadachi dlya nelineinogo evolyutsionnogo uravneniya Ginzburga–Landau–Shredingera”, Differents. uravneniya, 39:8 (2003), 1087–1091 | DOI | MR
[7] Sh. M. Nasibov, “On some sufficient conditions for the blow-up solutions of the nonlinear Ginzburg–Landau–Schrödinger evolution equation”, J. Appl. Math., 2004:1 (2004), 23–35 | DOI | MR
[8] Sh. M. Nasibov, “Ob otsutstvii globalnykh reshenii smeshannoi zadachi dlya nelineinogo evolyutsionnogo uravneniya tipa Shredingera”, TMF, 195:2 (2018), 190–196 | DOI | DOI | MR
[9] Sh. M. Nasibov, “Nelineinoe evolyutsionnoe uravnenie Shredingera v dvumernoi oblasti”, TMF, 201:1 (2019), 118–125 | DOI | DOI | MR
[10] Sh. M. Nasibov, “Ob odnom nelineinom uravnenii Shredingera s dissipativnym chlenom”, Dokl. AN SSSR, 304:2 (1989), 285–289 | MR | Zbl
[11] Sh. M. Nasibov, “Ob ustoichivosti, razrushenii, zatukhanii i samokanalizatsii reshenii odnogo nelineinogo uravneniya Shredingera”, Dokl. AN SSSR, 285:4 (1985), 807–811 | MR | Zbl
[12] Sh. M. Nasibov, “Ob optimalnykh konstantakh v nekotorykh neravenstvakh Soboleva i ikh prilozhenii k nelineinomu uravneniyu Shredingera”, Dokl. AN SSSR, 307:3 (1989), 538–542 | MR | Zbl
[13] O. I. Kudryashov, “Ob osobennostyakh reshenii nelineinykh uravnenii tipa Ginzburga–\allowbreakLandau”, Sib. matem. zhurnal, 16:4 (1975), 866–868 | DOI | MR | Zbl
[14] M. Weinstein, “On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations”, Commun. Partial Differential Equations, 11:5 (1986), 545–565 | DOI | MR
[15] H. Nawa, “Asymptotic and limiting profiles of blow up solutions of the nonlinear Schrödinger equations with critical power”, Commun. Pure Appl. Math., 52:2 (1999), 193–270 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[16] Sh. M. Nasibov, “Ob otsutstvii globalnykh periodicheskikh reshenii nelineinogo evolyutsionnogo uravneniya tipa Shredingera”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 494:1 (2020), 53–55 | DOI