$q$-Universal characters and an extension of the lattice $q$-universal characters
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 51-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider two different subjects: the $q$-deformed universal characters $\widetilde S_{[\lambda,\mu]}(t,\hat t;x,\hat x)$ and the $q$-deformed universal character hierarchy. The former are an extension of $q$-deformed Schur polynomials, and the latter can be regarded as a generalization of the $q$-deformed KP hierarchy. We investigate solutions of the $q$-deformed universal character hierarchy and find that the solution can be expressed by the boson–fermion correspondence. We also study a two-component integrable system of $q$-difference equations satisfied by the two-component universal character.
Mots-clés : $q$-deformation, boson–fermion correspondence
Keywords: universal character, $q$-deformed universal character hierarchy, lattice $q$-deformed universal character hierarchy.
@article{TMF_2021_208_1_a3,
     author = {Yang Gao and Chuanzhong Li},
     title = {$q${-Universal} characters and an~extension of the~lattice $q$-universal characters},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {51--68},
     year = {2021},
     volume = {208},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a3/}
}
TY  - JOUR
AU  - Yang Gao
AU  - Chuanzhong Li
TI  - $q$-Universal characters and an extension of the lattice $q$-universal characters
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 51
EP  - 68
VL  - 208
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a3/
LA  - ru
ID  - TMF_2021_208_1_a3
ER  - 
%0 Journal Article
%A Yang Gao
%A Chuanzhong Li
%T $q$-Universal characters and an extension of the lattice $q$-universal characters
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 51-68
%V 208
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a3/
%G ru
%F TMF_2021_208_1_a3
Yang Gao; Chuanzhong Li. $q$-Universal characters and an extension of the lattice $q$-universal characters. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 51-68. http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a3/

[1] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Non-linear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, 13–16 May, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR | Zbl

[2] I. Schur, “Über Darstellung der symmetrischen und der alternieren Gruppen durch gebrochenen linearen Substitutionen”, J. Reine Angew. Math., 139 (1911), 155–250 | DOI | MR

[3] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR | Zbl

[4] K. Koike, “On the decomposition of tensor products of the representations of classical groups: by means of universal characters”, Adv. Math., 74:1 (1989), 57–86 | DOI | MR

[5] T. Tsuda, “Universal characters and an extension of the KP hierarchy”, Commun. Math. Phys., 248:3 (2004), 501–526 | DOI | MR

[6] T. Tsuda, “Universal characters, integrable chains and the Painlevé equations”, Adv. Math., 197:2 (2005), 587–606 | DOI | MR

[7] T. Tsuda, “Universal character and $q$-difference Painlevé equations”, Math. Ann., 345:2 (2009), 395–415 | DOI | MR

[8] T. Tsuda, “On an integrable system of $q$-difference equations satisfied by the universal characters: its Lax formalism and an application to $q$-Painlevé equations”, Commun. Math. Phys., 293:2 (2010), 347–359, arXiv: 0901.3900 | DOI | MR

[9] T. Tsuda, “From KP/UC hierarchies to Painlevé equations”, Internat. J. Math., 23:5 (2012), 1250010, 59 pp., arXiv: 1004.1347 | DOI | MR

[10] D.-H. Zhang, “Quantum deformation of KdV hierarchies and their infinitely many conservation laws”, J. Phys. A: Math. Gen., 26:10 (1993), 2389–2407 | DOI | MR

[11] L. Haine, P. Iliev, “The bispectral property of a $q$-deformation of the Schur polynomials and the $q$-KdV hierarchy”, J. Phys. A: Math. Gen., 30:20 (1997), 7217–7227, arXiv: hep-th/9503217 | DOI | MR

[12] P. Iliev, “Tau function solution to $q$-deformation of the KP hierarchy”, Lett. Math. Phys., 44:3 (1998), 187–200 | DOI | MR

[13] J.-S. He, Y.-H. Li, Y. Cheng, “$q$-Deformed Gelfand–Dickey hierarchy and the determinant representation of its gauge transformation”, Chinese Ann. Math. Ser. A, 3 (2004), 373–382 | MR

[14] J. He, Y. Li, Y. Cheng, “$q$-Deformed KP hierarchy and $q$-deformed constrained KP hierarchy”, SIGMA, 2 (2006), 060, 32 pp. | DOI | MR | Zbl

[15] Y. Ogawa, “Generalized $Q$-functions and UC hierarchy of B-Type”, Tokyo J. Math., 32:2 (2009), 349–380 | DOI | MR

[16] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type”, Phys. D, 4:3 (1982), 343–365 | DOI | MR

[17] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[18] T. Miwa, M. Jimbo, E. Date, Solitons. Differential Equations, Symmetries and Infinite Dimensional Algebras, Cambridge Tracts in Mathematics, 135, Cambridge Univ. Press, Cambridge, 2000 | MR

[19] Chuan-Chzhun Li, “Silno svyazannye universalnye kharaktery i ierarkhii tipa B”, TMF, 201:3 (2019), 371–381 | DOI | DOI | MR

[20] N. Wang, C. Li, “Universal character, phase model and topological strings on $\mathbb{C}^3$”, Eur. Phys. J. C, 79:11 (2019), 953, 9 pp. | DOI

[21] C. Li, B. Shou, “Quantum Gaudin model, spin chains, and universal character”, J. Math. Phys., 61:10 (2020), 103509, 12 pp. | DOI | MR

[22] Chuan-Chzhun Li, “Konechnomernye tau-funktsii ierarkhii universalnykh kharakterov”, TMF, 206:3 (2021), 368–383 | DOI | MR